THE OBSTACLE PROBLEM FOR A
FRACTIONAL MONGE-AMPERE EQUATION

YASH JHAVERI AND PABLO RAUL STINGA

ABSTRACT. We study the obstacle problem for a nonlocal, degenerate elliptic Monge—Ampere
equation. We show existence and regularity of a unique classical solution to the problem and
regularity of the free boundary.

1. INTRODUCTION

Obstacle problems for nonlocal operators appear in optimal control, mathematical finance, biology,
and elasticity, among other applied sciences. The regularity of solutions and free boundaries for
this type of nonlinear problem for the fractional Laplacian was studied by Silvestre in [14], and
by Caffarelli-Salsa—Silvestre in [3], and for homogeneous, translation invariant, purely nonlocal
uniformly elliptic operators by Caffarelli-Ros-Oton—Serra in [2].

In this paper, we investigate the following nonlocal obstacle problem:

Dsu>u— ¢ in R”
u< in R

(1.1) Dsu=u—¢ in {u <y}
i (u—0)() =0,

Here the fractional Monge-Ampere operator Dy is defined for s € (1/2,1) and v : R" - R, n > 1, as

ens [ ety buleoy) o)

. | ATy [nt2s Y

where x € R", ¢, s > 0, and M is the class of all positive definite symmetric matrices A of size

n x n such that det A = 1. In addition, ¢ is a function in C?“(R"), ¢ > 0, that is strictly convex in

compact sets and asymptotically linear at infinity, and conditions on the obstacle v are given below.
The nonlocal operator (1.2) was first introduced by L. A. Caffarelli and F. Charro in [1] as a

fractional analogue to the classical Monge-Ampere operator. In fact, if u is a convex C? function,

then it can be checked that

(1.3) n(det D?u(z))"/™ = inf tr(A2D%u) ().

(1.2) Dsu(z) = inf

If, in addition, u is asymptotically linear at infinity, then
lim Dyu(z) = n(det D?u(z))"/"
s—1

(see [1]). Like its local counterpart (1.3), the fractional operator (1.2) is degenerate elliptic. Indeed,
matrices of the form A = diag(e,1/¢), e > 0, in dimension 2, are in M, and they degenerate as
€ \( 0. Thus, the existence and regularity theory for nonlocal elliptic equations previously developed
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in [4, 5, 6], see also [9, 11, 13|, does not directly apply to equations involving (1.2). Caffarelli and
Charro considered the problem

Dsu(x) = u(z) — ¢(x) in R”
(1.4) lim (@ — ¢)(z) = 0

|z| =00
where ¢ is as above, and they showed existence of a unique, globally Lipschitz and semiconcave
classical solution . In addition, it was proved in [1] that @ has the crucial property that @ > ¢ in R™.
This ultimately implies that D, when acting on w, is locally uniformly elliptic and, consequently,
Va is locally Hélder continuous.

In view of the comparison principle for (1.4) and in order to have a meaningful obstacle problem,

we assume that the obstacle ¢ € C%1(R") is such that

v>¢ inR"™ and 1 <4 insome compact set K.

Here and in the remainder of this work, @ denotes the solution to (1.4).

While the main tool in [8] is the solution of a purely nonlocal and degenerate elliptic obstacle
problem, which stands as a replacement for the convex envelope in the fractional setting (with
the usual convex envelope being such an obstacle solution in the second order setting), we stress
that the problem (1.1) is different in nature than the one in [8]. Obstacle problems for the local
Monge-Ampere equation (1.3) were considered by Lee [10] and Savin [12]. Our problem (1.1) can
be seen as a parallel to [10].

Our first result establishes the existence and global regularity of a unique classical solution to
(1.1). For the necessary notation, see section 2.

Theorem 1.1. There exists a unique classical solution u to the obstacle problem (1.1). Moreover,
u 18 globally Lipschitz continuous and semiconcave with constants no larger than

(1.5) My = max {[¢]pipwn)s [V]Lipwn)}  and My = max { SC(¢),SC(v)},
respectively, and the contact set {u =} C K is compact. Furthermore,
(1.6) u>¢ inR™

The degenerate ellipticity of the fractional Monge-Ampere operator (1.2) prevents us from
applying standard techniques used to prove existence and uniqueness for nonlocal uniformly elliptic
obstacle problems [2, 14]. Therefore, to construct the solution u to (1.1), we need to devise a new
strategy. This is one of the main contributions of this paper. To prove Theorem 1.1, we consider a
family of obstacle problems of the form (1.1), but where D; is replaced by a truncated operator DS
(see section 2). We build the solutions u. to such uniformly elliptic nonlocal problems as the largest
subsolution sitting below 1 (see Theorem 3.8), following the standard method. More importantly,
the key feature of the family of solutions {u. }.~¢ is that it is uniformly globally Lipschitz continuous
and semiconcave with constants no larger than M; and M (see (1.5)), respectively. At this point,
though, the degenerate ellipticity of Dy prevents us from applying the stability of viscosity solutions
under local uniform convergence. Our crucial, delicate idea, which allows us to overcome this
difficulty, is to show that u = inf.~( u. remains strictly above ¢ (see Lemma 3.9). See section 3 for
details.

Next, we prove local Holder estimates on Vu outside of the contact set {u = 1} and across the
free boundary d{u < ¥}.

Theorem 1.2. Let u be the solution to the obstacle problem (1.1).

(1) Let O be an open set and let Os, 6 > 0, be a §-neighborhood of O such that Os CC {u < ¥}.
There exists 8 = B(n, s,info, (u — ¢), M1, Ms) € (0,1) such that u € C?+5=1(©O) and

[uller2sts-1(0y < C(1+ [lu — ¢l Loo(rn)),
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where C = C(f, diam(0)) > 0.
(2) Let B be a ball centered at the origin such that {u =} C B. There exists T = 7(n, s, inf4p(u —
®), My, Ms) € (0,1) such that u € CY7(B) and
ullcrr sy < CA+ [Yllcrrms))s
where C' = C(1,diam(B)) > 0.

The separation property (1.6) and the global regularity of u we found in Theorem 1.1 will permit
us to prove that, if we fix any ball B, then u solves

Ddu>u—¢ in R"
u < P in R”

(1.7) DMu=u—¢ in{u<y}nB
lim (1= ¢)(z) =0

where D? is the truncated version of (1.2), with ellipticity constants depending on the gap between
u and ¢ in B. Then Theorem 1.2 will follow from local regularity estimates for uniformly elliptic
nonlocal equations. These ideas also demonstrate another important point of divergence between
our obstacle problem and uniformly elliptic nonlocal obstacle problems. In [2], solutions are shown
to be C'7(R™). In contrast, since lim|, o (u — ¢)(x) = 0, we cannot guarantee that Dy, when
acting on u, will be globally uniformly elliptic. In particular, the Holder exponents 8 and 7 in
Theorem 1.2 degenerate as O drifts to infinity and B increases in size, respectively.

To study the regularity of the free boundary d{u < ¢} and the behavior of u near free boundary
points, we fix a ball B centered at the origin such that {u = ¢} C B. Then, u satisfies the obstacle
problem (1.7). Let

(1.8) v=1 —u.

Let o € 0{u < 9} = 0{v > 0} be a regular free boundary point (see Definition 5.1). As in [2], for
r >0 and a € (0,1) sufficiently small, we define the rescalings

v(zo + rz)

vp(x) = ey Y for x € R"

where

b [Vu(zo + ')HLOO(BP)‘

0(xg,7) = su =

p=r

Theorem 1.3. There exist a sequence r, \, 0, 1/4 < Kq < 1, and eqg € S"~! such that
v, () = Ko(eg - J;)}QLS in CL_(R™), as k — oo.

Observe that, unlike in [2], we do not know whether or not D2u = u — ¢ in the part of the
noncoincidence set {u < 1} that lies outside of B. Hence, even after subtracting the obstacle from
w in (1.7), we cannot use known regularity results for the free boundary. In fact, it is well known
that the behavior at infinity of solutions to nonlocal equations can have dramatic consequences on
their local properties (see, for instance, [7]). Moreover, our Holder estimates for Vu degenerate
at infinity. Nonetheless, we are able to overcome these issues due to the global regularity of u we
proved in Theorem 1.1. Indeed, this gives us enough control at infinity to be able to show Theorem
1.3. Finally, the separation property (1.6), the global regularity of u, and Theorem 1.3 permit us to
use the methods of [2], in our setting, to obtain regularity of the free boundary.

Theorem 1.4. Let u be the solution to (1.1). Let B be a ball centered at the origin such that
{u=1} C B. There exists @ = a(n, s,infyg(u — ¢), My, M) € (0,1) such that the following holds:
for any v € (0,&) and o € (0, &) such that 1+ s+ a < 2 and for any xo € 0{u < ¥},
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(1) either
.o {u =9} 0 Br(x0)|
hIrn\}élf B, (z0)] >0 and
¥(z) — u(z) = ed T (x) + oz — zo| T51%)
(2) or

o [{u=1) N B,(x0)
B 18, o))

Y(r) —u(z) = O(’:L‘ — xo‘min{25+’)/,1+8+a})

=0 and

(3) or

lim inf 1= 93 01 Brl0))
N0 B, (x0)|
() = u(z) = of|a — wo| TT)

where d(x) = dist(z, 0{u < ¥}) and ¢ > 0. Moreover, the set of points xo satisfying (1) is an open
subset of the free boundary of class C17.

>0 and

The paper is organized as follows. In section 2, we establish some preliminary results that will
be needed for the rest of the work. The proofs of Theorems 1.1, 1.2, 1.3, and 1.4 are presented in
sections 3, 4, 5, and 6, respectively.

2. PRELIMINARIES

In this section, we recall some facts about the fractional Monge-Ampere operator Ds, problem
(1.4), and uniformly elliptic nonlocal operators.

2.1. Notation. Let O be an open subset of R™ and f : O — R. We denote the Lipschitz constant

of fin O by
Flupo) = sup L& =IWI
1p( ) eyeO. 1ty ‘.’E — y‘

For the second order incremental quotient of f at z in the direction of y, we write

When O = R", we say that f is semiconcave if there exists a constant C' > 0 such that §(f,z,y) <
C|y|? for all z,3y € R™. In this case,

o(f, 2,y
SC(f) = sup (72)
z,ycR" ’y‘
is the semiconcavity constant of f. Alternatively, f is semiconcave if and only if f(x) — C|z|?/2 is
concave.

Let USC(O) (resp. LSC(O)) be the set of functions that are upper (resp. lower) semicontinuous
in O. Define

(@) =limsup{f(y) :y € O and |y — x| <r} forevery z € O.
r—0
We call f* the upper semicontinuous envelope of f in O; it is the smallest g € USC(O) satisfying
f<y.

Remark 2.1. A simple, useful property of the upper semicontinuous envelope f* of f in O is that
for any oy € O, there exist points y; € O such that yr — xo and f(yx) — f*(x0), as k — oo. (Note,
we allow yi = ¢ for all k.)
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2.2. The fractional Monge—Ampere operator. We begin this subsection by providing some
novel insight on the definition of the fractional Monge-Ampeére operator Dsu in (1.2), which may be
of independent interest. Next, we precisely describe ¢. Then, we discuss the definition of viscosity
solutions and some further properties of Dyu and the problem (1.4).

Recall that

M = {symmetric positive definite matrices A of size n x n such that det A = 1}.
For any A € ¢, we define the constant coefficient second order elliptic operator
Law(z) = —Alwo Al(A™ z) = — tr(A2D?w)(z),

see (1.3). Then, Ly is nothing but a linear transformation of the Laplacian —A. For s € (0, 1),
consider the fractional power operator

L% =—(Ly)® inR™
Lemma 2.2. Let w: R™ — R such that

()|
——  _d .
/Rn 1+ oz 0=

Let O be an open set. If w € C*19(0) or w € CY25+H971(O) when s > 1/2, for some § > 0, then,
for any x € O,

s w(y) —w(z)
Lyw(x) =c,s P. V.
A ( ) ) . |A*1(y _ x)’n+23
2.1) e [ vl ru oy o),
- 9 n |A71y|n+28 Y

— —(~A)[wo A[(Aa),

45T (n/2+s)

T2 s 0. As a consequence of (2.1), we have

where ¢, s =
Dow(z) = inf { Ljw(z): A€ M}.

Proof. The idea is to first prove (2.1) for w in the Schwartz class S, by applying the method of
semigroups as in [15, Lemma 5.1]. Then, for w as in the hypotheses, one can use an approximation
device exactly as done in [14, Proposition 2.4]. We just sketch the steps here. For A € M and
w € S, the heat semigroup generated by L4 acting on w is given explicitly by

—| AT |2/ (4t)
e
et aw(z) = /n T @m w(z —y)dy,

for x € R™ and ¢ > 0. Then, since e'*41(z) = 1, by Fubini’s theorem (see [15, Lemma 5.1]) and the
change of variables r = |[A~1x|?/(4t),

Ljw(z) = (LA) w(x)
t A d
’/ Law(z) — w(z)) tlis

oA a2 /(1) gt
e / =) — () dy

oy o AT gy
=P ‘Rﬁw(x‘y)‘w(x”[/o T(—s)|(mty2 115 | Y

w(z —y) —w() Y
|A—1y’n+25 )

=cpsP.V.
Rn
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as desired. The second identity in (2.1) follows immediately from the first one, and the third one is
deduced via a simple change of variables. O

Now, we give the precise description of the function ¢ appearing in (1.4) and (1.1). Let I" be a
cone and 7 : R®™ — R be such that

n(z)| < alz|™,  |Vn(2)| < alz|"*T9, and |D*n(z)| < alz|"@T9)
for some constants @ > 0 and € € (0,n). We let ¢ € C?7(R"), for some o > 0, be such that
#(0) =0, V¢(0)=0, and ¢=I+mn near infinity.

We will work with viscosity solutions as defined in [1, Definition 2.1].

Definition 2.3. Let O be an open subset of R". A function w : R®™ — R such that w € USC(O)
(resp. w € LSC(0)) is called a viscosity subsolution (resp. supersolution) to Dsw = w — ¢ in O,
which we denote by
Dsw > w— ¢ (resp. Dow < w — qﬁ) in O,

if whenever

- x¢ is a point in O;

- N C O is an open neighborhood of x;
P is a C? function on N;
P(x0) = w(zg); and
P(z) > w(z) (resp. P(z) < w(x)) for every x € N\ {z0};

then
Dsd(wo) = F(wo) — ¢(x0)  (vesp. Ds(wo) < F(wo) — ¢(x0))
where 9 is defined as

_JP(x) ifxeN
(2.2) v(z) = {w(l«) if v € R\ V.

When all of the items listed above are satisfied for some triplet (P, z, ), we say that P is a C?
function touching w from above (resp. below) at z in A. A viscosity solution w is both a viscosity
subsolution and a viscosity supersolution. In particular, solutions are continuous by definition.

From now on, any reference to a subsolution, supersolution, or solution will be in the viscosity
sense.

Note that a semiconcave function can always be touched from above by a quadratic polynomial
at any point.

Remark 2.4. Let P be a C? function touching w from above (resp. below) at zg in . If N
is any open subset of A/ containing zg, then P is a C? function that touches w from above (resp.
below) at xo in N. Define ¢ as in (2.2) and let

: !
9 (z) = P(x) fo eN
w(z) ifzeR"\N.
Then, ¢ > ¢ (resp. ¥ <) in R™ and ¥(zo) = ¥ (x0), so that §(9, zg,y) > 6(¥,zg,y) for every
y € R™ (resp. 6(9,z0,y) < 6(V,x0,y)). It follows that L59(zg) > L5V (zo) (resp. L50(zg) <
L59'(x0)) for all matrices A € M, which implies that
Dsﬁ(l‘o) 2 Ds’ly(fl)o)

(resp. Ds¥(xo) < Dt (x0)), see (1.2). Therefore, if Dsw > w — ¢ (resp. Dsw < w — ¢) in R™,
then, in order to check the viscosity solution condition from Definition 2.3, we can always restrict
ourselves to working in a smaller neighborhood N/ C A containing zg.
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From the definition of D, we see that

(1) If rpw(z) = w(x + h), for some h € R™, then Dy(tpw) = 74(Dsw).
(2) For any constant ¢ € R, Ds(w + ¢) = Dsw.
(3) Dy is a concave operator in the sense that, for any wi, wo,

w] + w 1 1
Ds <122> > §Dsw]_ + iDswg.

Let w be a viscosity subsolution (resp. supersolution) as in Definition 2.3. In the next lemma, we
state that if w can be touched from above (resp. below) by a C? function at a point x, then Dyw(z)
can be computed classically. This is an important, typical feature of nonlocal equations, see also [5,
Lemma 3.3].

Lemma 2.5 (see [1, Lemma 2.2]). Let w : R™ — R be asymptotically linear at infinity. If
Dow > w— ¢ (resp. Dswgw—¢) in O CR"

in the viscosity sense and w can be touched by a C? function from above (resp. below) at a point
x € O, then §(w,z,y)/|A~ y|" "2 € LYR") for every A € M and

Dsw(z) > w(z) — ¢(x) (resp. Dsw(x) < w(z) — ¢(z))
in the classical sense.
Finally, we recall the comparison principle proved by Caffarelli and Charro.

Theorem 2.6 (see [1, Theorem 4.1]). Let wy € USC(R") and wy € LSC(R™) such that

D5w1 > wp — ¢ in R™ Dswg < wo — gf) mn R™
lim (w; —¢)(x) =0 9§ lim (wy — )(z) = 0.

Then,
w; < ws in R™.

2.3. The truncated fractional Monge—Ampeére operator. For € > 0, consider the class
M. = {A € M: (AL E) > elé|? for all £ € R"}.

Since the matrices in M have determinant one, not only are the eigenvalues of A € M. bounded
from below, but they are also bounded from above. In particular,

elef? < (Ag,8) <e'""[¢]* for every £ € R™.

We define

Diu(x) :Aiélgf{ Liju(x).

The kernels of L%, for A € M, satisfy

ght2s 1 5(17n) (n+2s)

(2.3) |y [ t2s < | A= Ty[nt2s < |y[n+2s
Therefore, the truncated operator D% is uniformly elliptic in the sense of Caffarelli-Silvestre (see
Lemma 2.8 and [5, Definition 3.1, Lemma 3.2]). We define the notion of viscosity subsolution,
supersolution, and solution for D¢ exactly as in Definition 2.3. Moreover, by [5, Lemma 3.3], Lemma
2.5 also holds for D¢ in place of Ds. Obviously, DY = D;.

Caffarelli and Charro proved in [1, Theorem 3.1] that the operator Dy becomes uniformly elliptic
provided that Dsw is bounded below away from zero and w is globally Lipschitz and semiconcave.
The next statement presents an important refinement that will be crucial to proving our results.
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Theorem 2.7. Let ng, L, and C be positive constants, and fix an open set O C R"™. There exists
A= Xn,s,no, L,C) > 0 such that for any Lipschitz and semiconcave function w with constants L
and C, respectively, if 0 < e < X and

Diw>n9 >0 inO
in the viscosity sense, then

Diw(z) = D)w(z)  for every z € O

S

i the classical sense.

Proof. The proof follows by precisely tracking the constants in the proof of Theorem 3.1 in [1].
Following their notation, fix

n—1 n—1

M \ 2 Mo '\ 2
= £ d 0<¥@ —
€ (201 ) an < < <nlu1 >

(this value of € is not to be confused with 0 < & < X in our hypotheses). Then, € and 6 depend
only on n, s,n9, L, and C. Choose A = min{e, #,1}. We notice that if 0 < e < A, then we can apply
[1, Lemma 3.9] to deduce Proposition 3.3 in [1] with D¢ in place of D,. Thus, the statement of [1,
Proposition 3.5], being a simple consequence of Proposition 3.3, holds in our setting. We end our
proof exactly as in the proof of Theorem 3.1 in [1, pp. 12-13], in which § = 1/k. O

We close this section with some continuity and stability results, whose proofs follow as in [14,
Propositions 2.4 and 2.6] and [5, Lemma 4.5] by using that w satisfies (2.4) instead of being just
bounded.

Lemma 2.8. Let O be an open set, 1/2 < s < 1, and w € L{ (R™) be such that

loc

" [ -

Suppose that w € CH25HH=L(O) for some u > 0. Then, for any positive definite symmetric matriz
A of sizen x n, Lw € C*O) and
[Liwlono) < C[Vw]czstu-1(0),
where C' > 0 depends only on n, s, 4 and the largest eigenvalue of A. In particular, if € > 0, then
(2.5) the family {L5w : A € M.} is equicontinuous in O.
Consequently, by taking the infimum over A € M, above,
Diw € C(O).

We say that a sequence wy, € LSC(R™), k > 1, I'-converges to w in a set O if the following two

conditions hold:
- For any sequence xp — = in O, liminfy_, wg(xr) > w(x).

- For any = € O, there is a sequence xj, — z in O so that limsup;,_, ., wi(zg) = w(z).

Lemma 2.9. Let wy, € LSC(R") N L}

loc

()
— 7 dx <
/Rn (1 Jafyrizs SO <

for all k > 1. Let I be either L¥, for A€ M, or DS, fore >0, for any 1/2 < s < 1. Suppose that
- Twy, < fi, in O;
- wp — w in the I' sense in O;
- wE = w a.e in R and
- fr = f locally uniformly in O for some continuous function f.

(R™) be a sequence of functions such that
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Then,
Iw<f inO.

An analogous statement to Lemma 2.9 holds for subsolutions.

3. PROOF OF THEOREM 1.1

To construct the solution u, we define the class

(1) 7 ={weUSCR"): Dyw>w-¢nR" w<e and lim (w-@)(x) <0},

|z| =00
Notice that ¥ is nonempty because ¢ € F. Indeed, by assumption, ¢ < v in R", and by convexity,
§(¢p,z,y) > 0 for every z,y € R™. Hence, L5¢ > 0 in R" for every A € M, which implies that
Dsp > 0=¢ — ¢ on R™
Now, define
(3.2) u(z) = (sup {w(z) :w e T})* for z € R".
By construction,

ue USCR"), ¢<u<ey, and lim (u—¢)(x)=0.

|z|—o00

fu(z)|
— - d .
/Rn 1+ e 0=

Moreover, since u — 1 is upper semicontinuous in R", we have that

In particular,

(3.3) the noncoincidence set {u < 1} is open.

First, we will show that u, as defined in (3.2), is in the class ¥, see Lemma 3.4. We start with
two lemmas.

Lemma 3.1. Let wi,we € F. Then,
w(z) = max{w;(x),wa(z)} € F.

Proof. Evidently, w € USC(R"), w < ¢, and limp,,oo(w — ¢)(z) < 0. Let P be a C? function
touching w from above at zp in N. Without loss of generality, P(zo) = w(zg) = w1 (o), so P also
touches wy from above at zg in M. Let

P if P if
() = (x) ?me./\/' and 9y (z) = (x) %xEN

w(z) ifxeR"\N wi(z) ifzeR"\N.
Observe that ¥(x¢) = ¥1(zg) and ¥ > 91 in R™, from which it follows that 6(¢, zo,y) > §(91, 0, y)
for any y € R™. Therefore, given any matrix A € M,

a0(x0) = Liv1(x0) = Dsi(wo) = 1 (x0) — d(x0) = F(zo) — ¢(x0).

Thus, Ds9(x0) > ¥ xzo) — ¢(x0), and w is a subsolution to Dsw > w — ¢ in R™. O
Lemma 3.2. Let u be as in (3.2) and let P be a C? function touching u from above at xq in N .

Given any open neighborhood N CC N that contains g, there exist functions ug € F, points
zr € N', and constants dj, > 0, for k > 1, such that

up < Upy1, T — To,  dp 0, ug(rr) = u(xo),
and

(3.4) Py = Py) + =2l g,

A touches uy, from above at xj, in N.
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Proof. Fix x¢g € R™. The proof is divided into two steps.

— Step 1. There exist points y, and functions ug € F with up < ugyq such that
yr — o and  ug(yg) — u(zo).

Indeed, by Remark 2.1, there exists a sequence of points g such that

(3.5) yr — o and wW(yx) = sugw(yk) — u(xo).
we

Let k > 1. There is a sequence {wy,;}32; € F such that

(3.6) wr,;(Yx) / W(yr) asj — oo.
In particular, there exists J(k) > 0 such that
(3.7) 0 <w(yr) —wij(yx) < 1/k for every j > J(k).

Without loss of generality we can let J(k) < J(k + 1), for every k > 1. Define
ug(y) = max {wy j1)(¥), .-, W) (y)} fory € R".
Then, ug < ugyq and, by Lemma 3.1, u, € F for every k > 1. Finally, observe that, by the definition
of ug, (3.6), (3.5), and (3.7), as k — oo,
lu(z0) — ur(yr)| < |u(zo) —w(yw)| + (@W(ye) — ue(yw))
< |u(zo) — W(yk)| + (@(yx) — Wi sy (Yx)) — 0.

— Step 2. Let N/ CC N be any open neighborhood of zy. Without loss of generality, we can assume
that the sequence y; from Step 1 satisfies y, € N’ for all k > 1. Define

N7

Notice that di > 0 is well defined because P —uy, is lower semicontinuous in R™. Moreover, d > dj11
as up < upyq <u < Pin N. Also,

0 < di < P(yx) — uk(yx) — P(zo) — u(zo) = 0.
Let z;, € N7 be such that
(3.8) P(a;k) — Uk(l'k) = dk.

The set of points {z1}}2, is bounded, so, after passing to a subsequence, we can assume that
{xx}32, is convergent in N7,

Let us show that xi — x¢. Sippose, to the contrary, that there exists a sub%juence {7k, };";1 of
{zr}32, such that x;;, — 2’ € NV, as j — oo, with 2’ # 2. Then, as P > u in N"\ {zo} and P —u
is lower semicontinuous,

0 < P(2') —u(2') <liminf(P — u)(zg,) < lim dg, = 0,
Jj—o0 7 j—oo Y
which is a contradiction. Hence, . — xg, as desired.

This and (3.8) imply that ug(xg) — u(zg). By construction, P(xx) —dx = ug(zx) and P—dy > uy
in N’. So, Py(y) as defined in (3.4) is a C? function that touches u;, from above at zj in N7. O

Remark 3.3. In Lemma 3.2, we can modify the definition of Py(y) in (3.4). Indeed, as the proof
above shows, any function of the form

P(y) + ¢(y) — dk,

where ¢ is a C2 function such that o(x3) = 0 and ¢(y) > 0 for all y € N7\ {3}, will touch uy, from
above at zj in N'.



THE OBSTACLE PROBLEM FOR A FRACTIONAL MONGE-AMPERE OPERATOR 11

Lemma 3.4. Let u be as in (3.2). Then,
Dsu>u—¢ inR™
In particular,
u < U,
where u is the solution to (1.4).
Proof. Let P be a C? function touching u from above at zy in M. By Lemma 3.2, there exist
functions ux € ¥, points z € By(x9) CC N for some r > 0, and constants di > 0 such that

up < upr < u, dp N\ 0, ug(zr) — u(xo), and Py(y) = P(y) + %]y — x|? — dj, touches uy, from above
at zx in B.(zg) for k > 1. Define the test functions

) P(z) ifz € B(x)
) = {u(w) if 2 € R™\ By (20)

Pi(x) if x € By(x0)

and  Jg(z) = {uk(x) if € R™\ By(z0).

We recall that, by Remark 2.4, it is enough to use ¥ as defined above as a test function for u. Let
A € M and let A4 denote the maximum eigenvalue of A. Then,

Cros L0k ()
— B (0)\ By (xx) |sz1(?33 - ;9:)(?1)25 W /R”\Br(xo) ffkl(g(/?j - ;91]:)%@28
Ply)— P 1 — |2
= |:/Br(a:0)\B,,(:ck) !A_l(?; = xk()T’I;)rQS Wy /fsr(xo)\Bp(xk) \A_l‘(z —ZZ’)\”“S dy}
- P d
" /]R"\Br(avo) IA%Z(/Z/ - ﬂck()xll;i)+2 v /RH\BT(ZO) A~ (y —kxk)!’” 2
< e AL () + AT [; /B P $k1|n+25_2 dy + /R e H}’W dy]

< cpiLy9(ag) + C (k™ + di),

where C'= C(n, s,A4,7r) > 0 is independent of k. Here, we have used that

/ 1 dy — 1 d
——dy - dy
RO\ B, (o) 1Y — Tk|"T2 R\ B, (z0) 1Y — To|" T2

and

/ - dy — . d
—5 Y —5 Y,

Br(wo) [y — x| 72 Bo(wo) |y — 20|25 72

as k — oo. Hence, as uy, is a subsolution,

Vg (zg) — o(xr) < D (zg) < L5y (zg) + C(k:_l + dk)

Notice that 9 (z) = Pr(xr) — P(xo) = Y(z0) as k — oco. Together with Lemma 2.8, this implies
that
(o) — @(x0) < Ly (o).
Since A € M was arbitrary, we obtain ¥(zg) — ¢(xo) < Ds¥(x), which means that u is a subsolution
to Dgu > u — ¢.
We have already seen that lim|,_,o(u — ¢)(z) = 0. Thus, the comparison principle (Theorem 2.6)
implies that v < u. O

With Lemma 3.4 in hand, we can prove that the contact set {u = 1} is compact and that w is
Lipschitz and semiconcave with constants no larger than those of ¢ and 1.
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Lemma 3.5. Let u be as in (3.2). Then,
{u =1} is compact.
Proof. We know that u < 1 and that the noncoincidence set {u < ¢} is open, see (3.3). Therefore,

the contact set {u = 1} is closed. On the other hand, by Lemma 3.4, {u < ¢} C {u <4}, which
implies that {u =} C K. Hence, the contact set is compact. O

Recall the definition of M; and My from the statement of Theorem 1.1.
Lemma 3.6. Let u be as in (3.2). Then, u is Lipschitz continuous and semiconcave with
[u]rip@ny < M1 and  SC(u) < Ma.
Proof. Given any h € R™, let us first show that
(3.9) w(z) =u(z+h) — M;|h| € F.
Indeed, w € USC(R™),

lim (w—¢)(z) = lim [(u(:c +h) —u(z)) + (u(z) — ¢(m))] ~ Mi|h| <0,

and since —Mj|h| < ¢¥(x) —Y(z+ h) and u < ¥,
w(x) = u(x +h) = Mi|h| < u(z+h) =z + h) + P(z) < P().

Finally, as D; is translation invariant, Dsc = 0 for any constant ¢, and ¢(z + h) — ¢(z) < Mi|h|, we
find that

Dsw(x) = Ds(mpu)(x) = (Dsu)(xz + h) > u(x + h) — ¢(x + h)
= (u(z + h) = Mi[h|) — ¢(z + h) + M|h]
in the viscosity sense. Thus, (3.9) is proved. Now, by the maximality of v in ¥, w < w, which means
that
u(z 4+ h) —u(z) < Mi|hl.
Since x and h above are arbitrary, we conclude that [U]Lip(Rn) < M.
Given any h € R", let us first see that

u(x + h) +u(z — h) — Ma|h|? c

(3.10) w(zx) = 5 F.
Indeed, w € USC, and since §(¢, z,h) < Ma|h|?,
u(x u(r — 2
(w— ¢)(a) = I e =) ARIRE )
_ (=)@t +(u-9)@—h) @z h) — Myfhf?
2 2
USRS R ORI

as |z| — oo. Also, u < ¢ and 6(¢, x, h) < Ma|h|?, which implies that
h —h M;|h|? h —h My |h|?
o) Wz Fule =) Malh? _ (et h) +ule — k) Ml
2 2 2 2
Finally, using the inequality Ma|h|? — (¢, z,h) > 0,

< ().

Dyw(z) > %DS(Thu)(aj) + %DS(HU)@;)

1 1
= §’D5u(x +h)+ iDSu(a: —h)
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S (w=9)(@+h)+ (u—-¢)(x—h)
- 2

Ms|h|? = 6(¢, x, h
= w(a) + EIOER) ) > ) — o),
in the viscosity sense. Thus, (3.10) is proved. By the maximality of u in 7, we have that w < u.
Hence,

u(z + h) +u(z — h) — 2u(x) < Ms|h|?

or, equivalently, u is semiconcave and SC(u) < M. O

The semiconcavity of u permits us to compute Dsu(z) in the classical sense, see Lemma 2.5. We
use this to show that Dsu(z) is bounded from above.

Lemma 3.7. Let u be as in (3.2). Then, Dsu(x) can be computed in the classical sense and
0 < Dyu(z) < C(1+ ||lu — @l Loo(rn)) for every x € R",
for some constant C = C(n, s, a,e, My) > 0.

Proof. As u is semiconcave on R" (see Lemma 3.6), it can be touched from above by a C?
function at every point z € R"”. Thus, Lemmas 3.4 and 2.5 imply that Dsu(z) can be computed
classically and Dsu(z) > u(z) — ¢(x) > 0 for every x € R™. Since, for any x € R”, we have
S(u, z,y)/|y|" T2 € LY(R™) and §(¢,r,y) > 0, we can estimate

Du(z) < —(=A)u(x)
5(“7 ':L‘7 y) / 5(“? '1:7 y)
= Cn,s = dy + Cn,s ————dy
/Bl |y|n+2s R"\B1 |y’n+2s
SC(u)|y/? / (u—¢,z,y) (¢, x,y)
S Cn,s / T n+9s dy + Cn,s T In492s dy + Cn,s / T In49s dy
B |yl re\B,  |Y["t re\B, |Y|"T2
< O (M + [Ju — @l oo (mny — (—A) ¢())
< C(1+ [lu— @l Lo (rn))-
In the last inequality, we have used that
(3.11) 0< —(—A)*¢ < My inR",
for some constant My = My(n, s,a,€) > 0, see [1, eq. (6.8)]. O

Next we need to consider the obstacle problem (1.1) for the truncated fractional Monge-Ampere
operator defined in subsection 2.3.

Theorem 3.8. For any € > 0, there exists a unique classical solution u. to the obstacle problem

Dius > us — ¢ mn R"

ue <P mn R"

Diue =u: — ¢ in {u. < ¢}
lim (u. — ¢)(x) =0.

|z|—o0

Moreover, u. is Lipschitz and semiconcave with constants no larger than My and Ms, respectively.

Proof. Fix ¢ > 0. Parallel to (3.1), we define the class

7 = {w € USC(R™) : Diw > w — ¢ in R™, w < ¢, and lim (w — ¢)(z) < 0}.

|z| =00
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Then, ¢ € F.. By replacing u by u. and Ds by D in the arguments of Lemmas 3.1-3.4 and
Lemma 3.6, we deduce that

us(z) = (sup {w(z) : w e TE})* for z € R"
is the largest function in %, ¢ < ue < 9, limj, oo (ue — ¢)(x) = 0,
(3.12) [UE]Lip(R") S M1 and SC(U&‘) S MQ,

and the noncoincidence set {u. < 1} is open.
It remains to prove that

Diue. =u. — ¢ in {u: < ¢}.
We argue by contradiction. Specifically, we will show that if Diu. = u. — ¢ fails in the open set

{ue < 9}, then wu. is not maximal in %. To this end, let xy € {u:. < ¥} and P be a C? function
touching u. from below at 2o in A such that for

_JP(x) forzeN
) = {ug(x) for z € R"\ NV,

we have
Di’ﬁ(xo) > 19(560) — gb(l‘o)

Recall that D59 is continuous in N (see Lemma 2.8). Hence, given

0 <7 < Do) — (F(z0) — P(20)),
there exists a ball B,(x¢) CC N N{u. < v} such that
(3.13) Did(z) > V¥(z) — ¢(z) + 17 for every z € By (xp).
Next, we lift P in A/ by a small amount d > 0 (to be fixed) so that {u. < P+ d} CC B,(z¢) and
{P+d<1} C {u. < P+d}. We then set
, Pz)+d ifre{u.<P+d}
(z) = ;
us () otherwise,
and notice that u is continuous, u; > u. in R", and lim,|_,o(ul — ¢)(x) = 0. If we can show that

ul is a subsolution to Diw = w — ¢, then u. is not maximal in 7. because we constructed u. in
such a way that

ul(zo) = P(x0) +d > P(z0) = ue(p).
Therefore, we now prove that
(3.14) u’ is a subsolution to Diw = w — ¢ in R™.

Let P’ be a C? function touching u’. from above at 2’ in N”. We have two cases to consider.

- Case 1. 2’ € {u. = uc}. Since d(ul,2’,y) > 6(us, 2, y), by Lemma 2.5 (which is also valid for the
uniformly elliptic case), we see that

Diul(x') > Diuc(x') > us(2') — p(a') = ul(z') — ('),
and (3.14) follows.
— Case 2. ' € {u. > u.}. Define

,o ) Pl(z) ifxeN
ﬁ(x)_{u;(a:) if z € R"\ NV'.
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Remark 2.4 allows us to assume that N7 C {u. > u.} = {u. < P+ d} CC By(xp). Observe that
P —d>u.—d=Pin N and P'(2') — d = P(z2'). Then,
- , P'(y) — ul(z)) ul(y) — ul(e')
1 o e e €
s L3V (2") = lim dy—l—/
AT Z I J o AT — a3 Y Jo o TA a5
(P'(y) —d) — (P'(z) —d)

3.15 = lim dy+1
(3.15) =0 B, @y ATy —af)res
P(y) — P(«
> lim () (z') dy + 1

p—0 N\B,(a") ‘A_l(y — x’)]”+25

We estimate the integral I from below. Since u. > u. in R", u.(z') = P'(2') = P(2’) 4+ d, and
u. > P+din N\ NV, we find that

ul(y) — ul(2) / L (y) — ul(2)
I:/ & £ d + IS £
o Ay — )72 YT TAT (y — ) s
ue(y) — P(a') / d
3.16 2/ Yy — dy
(3.16) o A — )5 YT oy Ty — )

Py) — P&)
"y

W [ATHy — a2
From (3.15), (3.16) and the definition of 9, we get

. | P(y) - P(a) wely) - P(a')
e, 1LY (2) > lim d +/ d
AV 20 [y Ay — ) B YT o TATI(y — s W

1
— d/ dy
rew [ATH(y — 2|2
= c;éLfgz?(:c') - Cd,

where C' = C(n, s,e,N') > 0 is independent of A. By taking the infimum over all A € M. above and
using (3.13), we deduce that

DY (2') > DEI(2) — Cd > 9(2') — p(2') + 7 — Cd =¥ (2) — ¢p(z’) + 7 — (C + 1)d.
Thus, by choosing d > 0 sufficiently small, it follows that
D29 (o) > () — ().
This completes the proof of (3.14) and the theorem. O

Let ue and 7 be as in Theorem 3.8 and its proof. First, notice that if eg > ¢, then Du, > Diu,.
In particular, u. € %,. Hence, by the maximality of u., in #;,, we have that u., > u.. In other
words, the sequence of functions u. is decreasing as € 0. Let

(3.17) uo(x) = inf us(z) for z € R™.
e>0

Then, ug is well-defined because ¢ < u. < 9 for every € > 0. Clearly,

¢ <wup <Y and |l‘im (up — ¢)(z) = 0.

Moreover, (3.12) and Arzela—Ascoli’s theorem imply that ug is the local uniform (decreasing) limit
of ue and that ug is Lipschitz continuous with [uo]pipmn) < M.
The following is one of the crucial, most delicate estimates we need.

Lemma 3.9. Let ug be as in (3.17). Then,

ug > ¢.
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Proof. Let us argue by contradiction. Suppose that there is a point z¢ such that ug(zo) = ¢(xo).
Then, as ¢ < 1 in R", we have x¢ € {ug < ¥}. Since ¢ € C%7(R") is strictly convex in compact
sets and asymptotically close to a cone at infinity, we can find a function ¢ € C%*7(R"™) that is also
strictly convex in compact sets, asymptotically close to a cone at infinity, and touches both ug and
¢ from below in B, (z9) at z¢ for some r > 0. As ug is the local uniform limit of u., there exist
points x. € B(x¢) such that x. — xo and u. can be touched from below at z. in B, (zg) by

(3.18) ve(x) = p(x) —ew(|lz — z-|) +d-  for x € R™.

Here, d. N\, 0 and w = w(t) is convex, strictly increasing in [0, ), smooth in (0,7), linear in R\ [0, ),
w(0T) =w'(07) = 0, and such that ¢, is strictly convex in compact sets. Because ¢, is convex and
touches the supersolution u. from below at x.,

(3.19) 0 < Dspe(we) < Die(we) < pe(Te) — () = ue(we) — P(2).

As the sets {u. < ¥} are increasing and z. — g, we have x. € {u. < v} for all £ > 0 sufficiently
small. Moreover,

Ue(ze) — p(xe) > 0 as e 0.
This and (3.19) imply that

(3.20) 0 < Dgpe(xe) >0 ase 0.

Using this last inequality, we will prove that there exists a direction ey € S"~! such that
Cn,s d(¢, xo, teg)

(3.21) —(=A)s,p(xo) = 5 /RWHS dt <0.

This clearly contradicts the convexity of the nonconstant function . In turn, ug > ¢, as desired.
To deduce (3.21), suppose, to the contrary, that

(3.22) —(=A)p(zo) > >0 foralleecS" 1
Since the family {—(—A)S¢}ocsn—1 is equicontinuous (see (2.5)),

inf {—(—A)p(x.)} > £ >0 for all ¢ sufficiently small.
ecSn—1 2

The function w = w(|-|) in (3.18) is radially symmetric and convex. Hence, (—A)iw(0) is a negative

constant independent of e € S*~!. Therefore, we can ensure that e(—A)3w(0) > —u/4 provided &
is sufficiently small, independently of the direction e € S"~!. Collecting these last two facts and
(3.18), we deduce that

(3.23) —(=A)ip(w2) = —(~A)ip(e:) +£(=A)w(0) = £ >0,

uniformly in e € S*~! and for all ¢ sufficiently small. It is show in the proof of [1, Proposi-
tion 3.5] that an estimate of the form (3.23) readily yields the existence of a positive constant
T = 7(n, 8, {1, [¢]Lip@n), SC(¢)) such that Dspe(z.) > 7. This estimate is uniform in €, a contra-
diction to (3.20). Thus, (3.22) cannot hold. In other words, there are directions e; € S"~! such
that

< cns [ (@, xo,te
(3.24) —(=A), p(a0) = = /RWC“

IN

1
k?
for each k > 1. The compactness of S*~! allows us to assume, without loss of generality, that

er — ep for some ey € S"! as k — oo. The continuity of ¢ gives

5(907$07tek) 6(@? x07te0)
’t’1+2s ‘t‘1+2s ?
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as k — oco. Since ¢ is convex and has linear growth at infinity,

8(p, zo, ter)  min{2[@]pip@m)lt], SC(p)[t[*}
0= |t|1+23 < p|(t|n)+25 = Ll(R)’

uniformly in &£ > 1. Thus, we can apply the dominated convergence theorem to (3.24) to get
—(=A)¢(z0) = — lim (=A)g, p(z0) <0,
as desired. (]
Lemma 3.10. Let ug be as in (3.17). Then,
Dsug <ug— ¢ in {ug < ¥}.

Proof. Let ¢ € {up < ¥} be a point at which ug can be touched from below by a C? function in a
neighborhood N' CC {up < ¥}. As u. decreases locally uniformly to ug, we can find a sequence of
points . — xo and C? functions P. that touch u. from below at z. in a common neighborhood
N’ cc N. By Lemma 3.9, we have u. > ug > ¢. Then, by Theorem 2.7, there exists A > 0 such
that

Dsup(xo) = Dg‘uo(aﬁo) and Diuc(z.) = D;\ua(aﬁa)

for every e such that ¢ < A\. Now, since u, is a supersolution in {u. < 1} (see Theorem 3.8) that
can be touched from below by a C? function at x, in N, we can apply Lemma 2.5. Consequently,

(3‘25) Di\ua(xa) = DEUE(IE) < U&(xa) - ¢($E)
By Lemma 2.9,

lim Diug(z.) = Dlug(xo).

Thus, by letting € — 0 in (3.25),

Dyug(w0) = Daug(xo) < uo(xo) — d(x0).

With the following result we are able to conclude the proof of Theorem 1.1.
Lemma 3.11. Let u and uy be as in (3.2) and (3.17), respectively. Then,
U = ug.

Proof. Let us show that ug € F. Let A € M. If ¢ is smaller than the minimum eigenvalue of A,
then A € M, and, as such, we have L5u. > Dju. > u. — ¢ in R". Therefore, by Lemma 2.9, we
find that L%ug > up — ¢ in R". As A € M was arbitrary, it follows that

Dsug > ug — ¢ in R”.
Therefore, ug € F and ug < u. For the opposite inequality, observe that
Diu>Dsu>u—¢ in R".

Whence, u € F for all € > 0, and by the maximality of u. in %, u < u. for all € > 0. Thus, from
the definition of ug, we determine that u < ug. ]

Proof of Theorem 1.1. The proof follows from Lemmas 3.4-3.7 and Lemmas 3.9-3.11. ]
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4. PROOF OF THEOREM 1.2

We first prove Theorem 1.2(1), that is, the local Holder continuity of Vu in the noncoincidence
set.

Proof of Theorem 1.2(1). Let O and Oy be as in the statement. Since u > ¢ in R", by Theorem 2.7,
there exists A = A\(n, s, info, (u — ¢), M1, M) > 0 such that

Dyu(z) = D)u(z) for all z € Os.
For any A € M), let

ba(x) = Liyo(x) — (u— ¢)(x).

Since v and ¢ are Lipschitz, ¢ € C*?(R") and satisfies (3.11), and lim, o0 (u — ¢)(x) = 0, we
deduce that

(4.1) sup {[lball Lo (o) + [balripos) } < Co,
AEM),

where Cy = Cy(n, s, X\, My, M1,SC(¢)) > 0. Let w = u — ¢. We have
Ljw +ba(z) = Lyu— (u—¢) in Os.
By taking the infimum over all A € M) above, we see that w solves
AiélmgA {Lw+ba(z)} =0 in Os
w=u—¢e LPR"),
with b4 satisfying the uniform estimate (4.1). From Theorem 1.3(b) in [13], the conclusion follows. [

Next we prove Theorem 1.2(2), which establishes that Vu is Holder continuous across the free
boundary. Recall that the contact set {u = 1} is compact, see Lemma 3.5. Let B be as in the
statement. Set CB = {Cz : x € B} with C' > 0. By Theorem 2.7, there exists

(4.2) A= A(n,5,inf(u = ), My, Mp) > 0
such that

(4.3) Dsu=D)u in 4B.

Define

(4.4) ca(z) = (u—¢)(x) — Lyy(x).

Since sup 4ear, [L5Y]Lip(rn) < 00 and u, ¢ € Lip(R"), up to dividing by a constant depending on A,
we can assume that

(4.5) sup [calripmrn) = 1.
AEM),

We subtract the obstacle and let v be as in (1.8). For any A € M, we have
Lo+ ca(z) = —Lju + (u = ¢),
so that

sup {L5v +ca(x)} = —DMu+ (u— o).
AeMy
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Therefore, from (4.3) and up to dividing v by a normalizing constant depending on A, we get

v>0 in R®

D%*v(z) > —1d for a.e. z € R”
(4.6) supacar {L50v(x) +ca(x)} =0 in{v>0}N4B

SUPacap {L50(z) +ca(z)} <0 inR"

[Vo(z)| <1 for a.e. x € R™.

Finally, consider the extremal Pucci operators
Mjw(z)= sup Ljw(z) and M, w(z)= inf L5w(z).
AeM) AeM)y

To prove Theorem 1.2(2), we need the following rescaled version of a regularity result from [2].
Proposition 4.1. Let a € (0,s), 1l + s+ a <2, K >0, and R> 1. If w satisfies

w >0 mn R™

D*w(x) > —K1d for a.e. x € Bag

M (w—w(-—h)) > —K|h| in{w>0}NBg

Vw(z)| < K(1+ |z[51%) for a.e. x € R™,
then there exist 0 < 7 <1 and C' > 0, depending on o and X\, such that

0]l oo ) + BUN0] 1o (5,01 + BT [V0] 07 (3, ) < CKR2.

Bry2
Proof of Theorem 1.2(2). Fix B as in the statement. Let A be as in (4.2), and let v be as in (1.8).
Observe that, by (4.6) and (4.5),
My (v —v(- = h))(@) = (Lo + ca)(z) — (Lo +ca)(z — h) — (ca() — calz — 1))
> (Lo + ca)(z) — [h],
which gives

M (v —v(-—h)) > Asélag {L%v+ca(z)} —|h| = —|h| in{v>0}N2B.
A

With this and (4.6), we can apply Proposition 4.1 and conclude that v € C%7(B), with the
corresponding estimate. ([l

5. PROOF OF THEOREM 1.3

In order to prove Theorem 1.3, we consider v = 1) — u as in (1.8). We showed, in section 4,
that v satisfies the locally uniformly elliptic obstacle problem (4.6) with ellipticity constants A > 0
(as defined in (4.2)) and 1/A(»=D(+25)  Before proceeding with the proof, we define regular free
boundary points, the constant & > 0, and the rescalings we will use to determine the blow up
sequence, by following [2].

Definition 5.1. Let v : (0,00) — (0,00) be a nonincreasing function with

li = 0.
rl{r(l)u(r) 00

We say that a free boundary point z¢ € 9{v > 0} is regular with modulus v if

SupBP(IO) v

sup pltsta = (r)

p>r
for some « € (0, s) such that
1+s+a<?2.
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Definition 5.2. Let & = &(n, s, A) > 0 be the minimum of the following three constants:

- The a > 0 of the interior C“ estimate given by [5, Theorem 11.1];

- The a > 0 of the boundary C* estimate for u/d® given by [11, Proposition 1.1];

- The a > 0 of the interior C?**® estimate for convex equations given by [4, Theorem 1.1]
and [13, Theorem 1.1].

Without loss of generality and for the rest of this section, we assume that x¢g = 0 is a regular free
boundary point with modulus v. In the case 1 + s+ a > 2s + @, we further assume that

= B
liming =00 Bl
PO |By|
In particular, there exists ¢y > 0 such that
=0} NB,
(5.1) |{U‘B}’| o >0 for all p sufficiently small.

For r > 0, we define the rescalings

v(rz)

(52) 'U'r'(x) = MTOCQ(T) for x € R"
where
V'U oo
O(r) = su 7” Hi (By)
pzr P

Then, 6 is nonincreasing and 6(r) > v(r) for all r > 0, see [2, Lemma 5.4].

Proof of Theorem 1.3. We first prove that for any R > 0, [[v.||c1.-(p,) is uniformly bounded for all
r > 0 sufficiently small, where 7 € (0,1) is as in Proposition 4.1. Observe that

(5.3) v, >0 in R",
and, since 1 +s+a < 2 and 6(r) > v(r), for all r < 1,

2
2 r 2 1 n
(5.4) D?v,(z) = WTOCQO’)D v(re) > ) for a.e. x € R".
Let ca(z) be as in (4.4) and define
~ calrz)
car(®) = rl=stag(r)’

Then, for every r < 1, since a € (0, s) and (4.5) holds,
S—«
n n) <
[CA T’]Llp R ) = 9( ) [CA]Llp R7?) > ( )
Hence, following the proof of Theorem 1.2(2) in section 4, we see that
(5.5) M (v — v (- — b)) (z) > —‘(‘) for all z € {v, > 0} N Bygr
v(r
and for all » < 1 sufficiently small. Finally,
R V|| oo (B,

(5.6) V0w t) = e < R

which implies that
|V, (2)| < 2(1 + |z|*T*) for all z € R™.

Thus, by Proposition 4.1, [[vy||c1,7(py) is uniformly bounded for all r > 0 sufficiently small.
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Next, for any k > 1, we choose

1
. > =
(5.7) Tk Z g
such that
IVollpee(s,,) _ 1 1
. —F > (1 > — .

Since [|[Vvl|peo@ny < 1 and 0(1/k) > v(1/k) — oo as k — oo, we have that 1, — 0 as k — oo. In
addition, from (5.8) it follows that

1
(5.9) IV 0r, e e = 5

Moreover, in the case 1 + s+ a > 2s + @, by (5.1),

{vr, =0} N By| _ [{v=0}N Byl
| Byl | Brpl

(5.10) >¢p >0 for all p sufficiently small.

By Arzela—Ascoli’s theorem and a standard diagonal argument, there exists vg € Ci (R™) such that

loc
v, — vg  in CL.(R™).
Additionally, by (5.3) and (5.4),

vg >0 in R™
D%vp(x) >0 for a.e. z € R",

and, by (5.6) and (5.9),

< || Vwollpoe () < R forall R > 1.

N | =

Also, in the case 1 + s+ a > 2s + @, from (5.10), we find that

lim inf [{vo =0} 0 Bp|
N |B,|

Next, as R > 0 in (5.5) was arbitrary, by passing to the limit as |h| — 0 and r = ry — 0, we get

> co > 0.

M (8evo) >0 in {vg > 0}

and for all e € S"~!. Furthermore, by arguing as we did to obtain (5.5), for any R > 0 and any
nonnegative probability measure p with compact support, we find that

M <fur — /vr(- —h) du(h)) > _V?JT) in {v, >0} N Bg

provided r is sufficiently small. As a consequence,

My (vo — /vo(- —h) d,u(h)) >0 in {vy > 0}.
Therefore, applying the classification results in [2, Theorems 7.1, 7.2] to vy, we finally obtain
vo(x) = Koleo - 2) 1",

for some 1/4 < Ky <1 and ey € S"7!, as desired. O
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6. PROOF OF THEOREM 1.4

As in section 5, we assume, without loss of generality, that xo = 0 is a regular free boundary
point with modulus v.

Proof of Theorem 1.4. Consider v, as in (5.2), for r = ry, given by (5.7). From Theorem 1.3 and its
proof, we have that given any dp > 0 and Ry > 1, there exists 79 = r(do, Ro, @, v, A) € (0,1) such
that for all 0 < rp < rg,
M;r(aevrk)
My (Oevr,)

—dp in {Urk > 0} N Bg,

>
<dp in {v,, >0} N Bpg,,

for all e € S"~!, and
vr, () — Koleo - )| + [V, () — (14 s)Ko(eo - 2)%e0| < Jg  for every x € Bp,.
In addition, for every R > 1, we have
IVor |l oo () < RETE,

for all k > 1, see (5.6). With these estimates in hand, we can argue exactly as in sections 8.2 and
8.3 of [2] and deduce that Theorem 1.4 holds. O
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