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Abstract. We study the most common image and informal description
of the optimal transport problem for quadratic cost, also known as the
second boundary value problem for the Monge–Ampère equation—What
is the most efficient way to fill a hole with a given pile of sand?—by
proving regularity results for optimal transports between degenerate
densities. In particular, our work contains an analysis of the setting
in which holes and sandpiles are represented by absolutely continuous
measures concentrated on bounded convex domains whose densities
behave like nonnegative powers of the distance functions to the boundaries
of these domains.

1. Introduction

The optimal transport problem, formulated by Gaspard Monge in 1781,
asks whether or not it is possible to find a map minimizing the total cost of
moving a distribution of mass f to another g given that the cost of moving
from x to y is measured by c = c(x, y). Since its inception, optimal trans-
portation has drawn together and impacted many areas of mathematics: fluid
mechanics, functional analysis, geometry, general relativity, and probability,
just to name a few (see, e.g., [1, 15, 23, 25, 30]). The most fundamental case
is that of the quadratic cost on Rn, when c(x, y) = |x−y|2 for x, y ∈ Rn. It is
the model for all sufficiently smooth cost functions on all sufficiently smooth
(Riemannian) geometries ([10]), and it is at the core of many applications
([30]). Precisely, it is

min
T

{ˆ
Rn
|x− T (x)|2 df(x) : T#f = g

}
.

Under certain conditions on the nonnegative measures f and g, Brenier
discovered that the optimal transport problem for the quadratic cost on
Rn is uniquely solvable f -almost everywhere ([2]; see also [24]). Moreover,
he characterized minimizing maps as gradient maps of convex potentials:
Tmin = ∇u for some convex function u : Rn → R. When f and g are
absolutely continuous with respect to Lebesgue measure, he also established
that any convex potential u defining Tmin satisfies a Monge–Ampère equation,

g(∇u) detD2u = f and ∇u(spt f) = spt g,
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in a suitable weak sense (the Brenier sense; see Lemma 3.1), where f = f dx
and g = g dy. (In this work, we equate absolutely continuous measures
with their densities. It will either be clear from the context or explicitly
stated when absolute continuity is assumed.) In turn, Brenier linked the
optimal transport problem and the second boundary value problem for the
Monge–Ampère equation: given two convex domains and a nonnegative
function on their product, find a convex function whose gradient maps one
domain onto the other with Jacobian determinant proportional to the given
function.

Unfortunately, optimal transports can behave rather poorly. Indeed,
Caffarelli observed that Tmin = ∇u can be discontinuous under the seemingly
ideal conditions that f and g are the characteristic functions of smooth,
bounded domains of equal volume ([3]; see also [20]). In principle then,
a convex potential of an optimal transport (on the support of the source
measure) even between “nice” measures is no better than an arbitrary convex
function. That said, in this same work, Caffarelli showed that the optimal
transport must be locally Hölder continuous in X := int(spt(f)) under a
geometric condition—Y := int(spt(g)) is convex—and a uniform ellipticity
type condition—the Monge–Ampère measure associated to u is doubling
in spt(f). In subsequent works, Caffarelli established the global Hölder
continuity of ∇u assuming that both X and Y are convex ([4]), and the
global Hölder continuity of D2u, the Hessian of u, additionally assuming X
and Y are C2 and uniformly convex and f and g are positive and Hölder
continuous in X and Y respectively ([5]).

In this nondegenerate setting, Urbas also proved that D2u is Hölder
continuous up to ∂X when X and Y are uniformly convex, but under a
C3 regularity assumption on X and Y ([28]). More recently, Chen, Liu,
and Wang demonstrated that these domain regularity assumptions can be
weakened to C1,1 in n ≥ 3 dimensions and C1,α in two dimensions ([7, 8]). In
two dimensions and at the same time as Caffarelli, Delanoë established the
existence of globally smooth solutions to the second boundary value problem
for the Monge–Ampère equation given smooth data ([9]).

In the degenerate setting of arbitrary open, bounded source and target
domains, but still considering densities bounded away from zero and infinity,
Figalli ([12]), Figalli–Kim ([14]), Goldman–Otto ([18]), and Goldman ([17])
showed that the closure of the discontinuity set of an optimal transport, also
known as the singular set, has zero measure in X.

In this paper, we consider a different degenerate setting, one in which f
and g are permitted to vanish at times, e.g., continuously at the boundaries
of X and Y . This scenario encompasses a study of the most common image
and informal description of the optimal transport problem:

What is the most efficient way to fill a hole with a given pile of sand?

Our first result is a global Hölder continuity regularity result for optimal
transports between absolutely continuous, doubling measures (see Section 2
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for the definition of a doubling measure in this context). This doubling
assumption is different from Caffarelli’s doubling assumption in that it is
only on the data of the problem rather than on the data and the solution, as
it is in Caffarelli’s case.

Theorem 1.1. Let X and Y be open, bounded convex sets in Rn, and suppose
that f and g are densities which define doubling measures concentrated on X
and Y respectively. Let Tmin be the optimal transport taking f to g. Then
Tmin ∈ Cσ(X), for some σ ∈ (0, 1), depending on n, the doubling constants
of f and g, and the inner and outer diameters of X and Y .

Our second result establishes (optimal) global regularity for the optimal
transport in the plane when f and g are comparable to nonnegative powers of
the distance functions to the boundaries of their supports, which we assume
are convex:

f ∼ dα∂X for some α ≥ 0 and g ∼ dβ∂Y for some β ≥ 0.

In this work, d∂∗ represents the distance function to the boundary of ∗;
d∂∗ > 0 in ∗ and d∂∗ = 0 outside of ∗. Thus, we assume our sandpile and
hole (turned upside down) have precise shapes at their boundaries.

Here we show that the optimal transport effectively splits along the
tangential and normal directions to ∂X. Let u′ : [0, 1]→ [0, 1] be the optimal
transport taking a density which behaves like xα near 0 to another density
which behaves like yβ near 0. Then, by the mass balance formula,

u′(t) ∼ tγ with γ := 1 + α

1 + β
.

In other words, informally, we find that Tmin behaves like the identity map
t moving along the boundary of X and the one dimensional transport tγ
moving orthogonally in from the boundary of X.

In order to precisely state our theorem and expansion, we must define
three Hölder exponents, λ, µ, and ω, to formalize what we mean by ∼ above.
We state our theorem assuming that α > 0 and β > 0, and make a remark
after to address the mild difference when either α = 0 or β = 0. There are
two cases to consider. When α ≥ β, let

µ := λ
1 + γ

2 and ω := λ, for any fixed 0 < λ ≤ min
{
α

2
1 + γ

,
2

1 + γ
, β

}
.

If α = β, i.e., γ = 1, we additionally assume that λ < 1. On the other hand,
when α < β, set

µ := λ and ω := λ
1 + γ

2γ , for any fixed 0 < λ ≤ min
{
α,

2γ
1 + γ

, β
2γ

1 + γ

}
.

Theorem 1.2. Let X and Y be open, bounded, and C1,1 uniformly convex
sets in R2. Suppose α and β are two positive constants. Let a ∈ Cµ(X)
and b ∈ Cω(Y ) be two positive functions. Suppose that Tmin is the optimal
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transport taking f = adα∂X to g = bdβ∂Y . If γ ≥ 1, then Tmin ∈ C1+λ(X). On
the other hand, if γ < 1, then Tmin ∈ Cγ(1+ω)(X).

At the heart of Theorem 1.2 is an expansion of a convex potential defining
Tmin at points on ∂X. In particular, up to a translation placing 0 ∈ ∂X and
subtracting off the tangent plane to u at 0, we prove that

|u(Mx)− p1x
2
1 − p2x

1+γ
2 | ≤ C(|x1|2 + x1+γ

2 )1+λ
2 in {x2 ≥ 0} ∩M−1X,

where M is some linear transformation and p1, p2, and C are three positive
constants.

Remark 1.3. The case α = 0 = β is, by now, well-understood. When α = 0
(respectively β = 0), the upper bound on λ becomes independent of any
dependence on α (respectively β).

Our final main result is a Liouville theorem in the flat setting, when
X = {xn > 0} and Y = {yn > 0}, with a ≡ 1 ≡ b. Here un ≥ 0 in {xn > 0},
and our Monge–Ampère equation is

(1.1) detD2u = xαn

uβn
in {xn > 0} and un = 0 on {xn = 0}.

We remark that this equation is invariant under affine transformations that
keep the tangential variables x′ = (x1, . . . , xn−1) separate from the normal
variable xn: Ax = (A′x′, anxn). Furthermore, since all three notions of weak
solution to the Monge–Ampère equation (Alexandrov, Brenier, and viscosity)
are equivalent in this case, the following theorem classifies not only Brenier
solutions to (1.1), but also Alexandrov and viscosity solutions to (1.1).

Theorem 1.4. Let u be convex and such that (∇u)#d
α
∂{xn>0} = dβ∂{yn>0},

for two given constants α ≥ 0 and β ≥ 0. Then
u(x) = p0 + p′ · x′ + P ′x′ · x′ + pnx

1+γ
n

for some p0 ∈ R, p′ ∈ Rn−1, positive definite matrix P ′, and constant pn > 0.

This paper is organized as follows. The next section collects some facts
from measure theory and convex analysis. In Section 3, we revisit Caffarelli’s
boundary regularity theory, and prove Theorem 1.1. In Section 4, we study
the flat setting, and we prove our (Liouville) Theorem 1.4. In Section 5, we
establish a pointwise “flat implies smooth” result. Finally, in Section 6, we
prove Theorem 1.2.

2. Preliminaries

Throughout this work, c and C will denote positive constants that may
change from line to line. It will be clear from the context, if any change
occurs. Sometimes some of the quantities on which c and C depend will be
explicit and denoted in parentheses or as subscripts; other times, especially
when these quantities are contextually clear, these quantities will be implicit.

Let us start with a pair of definitions and an important lemma by John.
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Definition 2.1. We say that a map T pushes-forward a measure f to another
measure g, T#f = g, ifˆ

ϕ ◦ T df =
ˆ
ϕ dg for all ϕ Borel and bounded.

Definition 2.2. A nonnegative measure f is doubling (on bounded convex
domains) if there is a constant C ≥ 1 such that the following holds: given
an open, bounded convex set S whose barycenter is contained in spt f ,

f(S) ≤ Cf(1
2S),

where 1
2S is the dilation of S with respect to its center of mass by 1/2.

Definition 2.3. An ellipsoid is the image under a symmetric positive definite
affine transformation of B1(0). In particular, let E be any symmetric positive
definite matrix and x ∈ Rn, the ellipsoid generated by E and centered at
x ∈ Rn is

EE,x := x+ E(B1(0)).
Given r > 0, we let

rE = rEE,x := ErE,x

be the dilation of E with respect to its center by r. (Given an ellipsoid E, we
can assume its generating matrix E can be diagonalized with a determinant
1 orthogonal matrix.)

Lemma 2.4 (John’s Lemma). Let S ⊂ Rn be a bounded convex set with
nonempty interior and center of mass z. A unique ellipsoid E also with
center of mass z exists such that

E ⊂ S ⊂ n
3
2E.

With these definitions and John’s lemma in hand (see, e.g., [19] for a
proof), we prove that a measure that is doubling on ellipsoids is doubling.

Corollary 2.5. Let f be a nonnegative measure. If f is doubling on ellipsoids,
then f is doubling.

Proof. Let S be an open, bounded convex set. Then, by John’s lemma, S is
comparable to an ellipsoid E: E ⊂ S ⊂ n3/2E, and the center of mass of E is
the same as the center of mass of S. If C ≥ 1 is the doubling constant for f
on ellipsoids and k ≥ 1 is chosen such that n3/2/2k ≤ 1/2, then

f(S) ≤ f(n
3
2E) ≤ Cf(1

2n
3
2E) ≤ · · · ≤ Ckf( 1

2kn
3
2E) ≤ Ckf(1

2E) ≤ Ckf(1
2S).

�

As a consequence of Lemma 2.5, we can show that measures that are
comparable to the distance function to the boundary of a convex domain are
doubling.
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Lemma 2.6. Let X ⊂ Rn be an open, bounded convex set. The density
f = adα∂X defines a doubling measure on ellipsoids if 0 < infX a, supX a <∞.
In particular, a constant C ≥ 1 exists for whichˆ

E

f ≤ C
ˆ

1
2E
f

given any ellipsoid E centered in X.

Proof. There are two cases to consider.

Case 1: E ⊂ X. Let d := d∂X(z), with z taken to be the center of E. Up
to a translation and rotation, E, X ⊂ {xn > 0}, and the origin is the closet
point on ∂X to z.

First, note d∂X(x) ≤ 2d for all x ∈ ∂E, and so, for all x ∈ E. Indeed, if
xn ≤ zn, then there is nothing to show. If xn > zn, then

d∂X(x) ≤ d∂{xn>0}(x) = xn = (xn − zn) + zn = (zn − x∗n) + zn ≤ 2zn,

since x∗n, xn > 0. Here x∗ ∈ ∂E is the dual point to x. Soˆ
E

f ≤ 2α(sup a)dα|E|.

Second, for i = 1, . . . , n, let ri and ei be the principle radii and directions
of E. Hence, 4 := conv{z ± riei : i = 1, . . . , n} ⊂ E. Also, |4|/|E| ≥ c(n).
Now consider 4d := conv{z±max{ri, d}ei : i = 1, . . . , n}, which contains 4
and is contained in X. For all x ∈ 1

24d then, dist∂4d(x) ≥ d/2
3
2 . In turn,

d∂X(x) ≥ d∂4d(x) ≥ d

2
3
2
for all x ∈ 1

24.

It follows that

dα|E| ≤ 2n+ 3α
2

c(n) inf a(inf a) d
α

2
3α
2
|124| ≤

2n+ 3α
2

c(n) inf a

ˆ
1
24

f ≤ C(n, α, inf a)
ˆ

1
2E
f.

Finally, the above two inequalities together yieldˆ
E

f ≤ C(n, α, inf a, sup a)
ˆ

1
2E
f.

Case 2: E\X is nonempty. Up to a translation, we can assume that the
center of E is the origin. Let z be the center of mass of (1

2E)∩X, d := d∂X(z),
and suppose that the nearest point to z on ∂X lives on the plane {x · e = 0}
for some |e| = 1.

Using that open, bounded convex sets are balanced with respect to their
center of mass, d∂{x·e>0} is 1-homogeneous, and arguing like we did to
produce the first inequality above, we see that

d∂X(x) ≤ C(n)d for all x ∈ E ∩X.
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Now let J be the John ellipsoid of (1
2E) ∩ X, which also has center z.

Notice that J ⊂ X. Soˆ
E

f ≤ Cdα|E ∩X| ≤ Cdα2n|(1
2E) ∩X| ≤ Cdα|J| ≤ C

ˆ
1
2J
f ≤ C

ˆ
1
2E
f.

Here we have used the arguments of Case 1 on J and that E∩X ⊂ 2[(1
2E)∩X],

which uses that 0 ∈ X. �

Remark 2.7. By Corollary 2.5, if 0 < infX a, supX a <∞, then f = adα∂X
defines a doubling measure.

We conclude this section with three lemmas. These lemmas use nothing
about the optimal transport problem; they are facts about convex functions
with centered sections. The first lemma’s proof may be found in [4].

Lemma 2.8 (Centered Sections). Let u : Rn → R be a convex function
whose graph contains no complete lines. Then, for every h > 0 and z ∈ Rn,
there exists an affine function ` such that `(z) = u(z) + h and the set

Sch(z) := {x ∈ Rn : u < `}
is centered at z.

Lemma 2.9. Let Sch(z) be a centered section for u at z ∈ Rn. Let z1 and
z2 be two opposite points on ∂Sch(z), i.e., z2 = z + l(z − z1) for some l > 0.
Then

n−
3
2 ≤ l ≤ n

3
2 .

Proof. Without loss of generality, we may assume that z = 0 and that z1
and z2 lie on the e1-axis. So, by John’s lemma, E ⊂ Sch(0) ⊂ n3/2E, for some
ellipsoid E, whose center of mass is also the origin. Let e > 0 denote the
e1-component of E∩ {positive e1-axis}. Abusing notation, we let z1 > 0 and
−lz1 denote the e1-component of z1 and z2. In turn, e ≤ z1, lz1 ≤ n3/2e,
from which it follows that n−3/2 ≤ l ≤ n3/2, as desired. �

Lemma 2.10. Let Sch(z) be a centered section for u at z ∈ Rn. Then

h ≤ max
Sc
h

(z)
(`− u) ≤ (1 + n

3
2 )h.

Proof. Without loss of generality, z = 0.
Since (`− u)(0) = h, by definition, the first inequality is trivial.
Now let zh ∈ Sch(0) be a point at which `− u achieves its maximum value;

let z1 and z2 be the opposite points on ∂Sch(0) for which the segment [z1, z2]
contains 0 and xh; and let ψ ≥ 0 be the one-dimensional concave function
defined by `−u on [z1, z2]. Notice that the lines `i ⊂ R2 determined by (zi, 0)
and (0, h), for i = 1, 2, are secant lines for graph of ψ. Hence, the graph of
ψ must live under the union of the subgraphs of these two lines. Assume
that zh ∈ [0, z2]. Otherwise, swap the roles of z1 and z2 in what follows.
Consider the triangle (in R2) over [z1, 0] with height h determined by the
points (z1, 0), (0, 0), and (0, h). Its maximal self-similar enlargement over



8 Y. JHAVERI AND O. SAVIN

[z1, z2], whose base has right end point (z2, 0) instead of (0, 0), has height
Ch with 1 + n−3/2 ≤ C ≤ 1 + n3/2 (see Lemma 2.9), from which the second
inequality follows. �

3. Boundary Regularity of Maps with Convex Potentials
Revisited

In this section, we prove Theorem 1.1, and list some geometric properties of
convex potentials defining optimal transports between absolutely continuous
doubling measures on convex domains. Let u0 : Rn → R be a convex
potential defining the optimal transport of Theorem 1.1. It will be convenient
to replace u0 with its minimal convex extension outside of X. More precisely,
we consider the function

u(x) := sup
z∈X,p∈∂u0(z)

{u0(z) + p · (x− z)}.

Similarly, we let v0 be the Legendre transform of u0, and
v := the minimal convex extension outside Y of v0.

Thus, ∇v is the optimal transport taking g to f .
Given a centered section S = Sch(z) for u, which exists at every z ∈ Rn

([4]), we define the normalized pair (ũ, S̃) by

ũ(x) := [u− `](A−1x)
h

and S̃ := A(S)

where A(E) = B1(0) and E is the John ellipsoid of S. Moreover, we let f̃ and
g̃ be the appropriate rescalings of f and g which ensure that (∇ũ)#f̃ = g̃.
Similarly, we define X̃ := A(X) and Ỹ := h−1∇A−t(Y ). Here and in the
remainder of this work, we let

L−t = (L−1)t,
i.e., the transpose of the inverse of L, for any invertible transformation.

We first recall that optimal transports balance mass ([2, 29]).

Lemma 3.1. Let u : Rn → R be convex and such that (∇u)#f = g, where
f and g are two absolutely continuous measures. Then, for all Borel sets
B ⊂ Rn, ˆ

B
f =
ˆ
∂u(B)

g.

Next we prove an Alexandrov maximum principle for normalized pairs.

Lemma 3.2. There is an increasing function ϑ : [0,∞)→ [0,∞), depend-
ing only on dimension and the doubling constants of f and g, such that
limd→0 ϑ(d) = 0 and

|ũ(x)| ≤ ϑ(d∂S̃(x)) for x ∈ S̃.

Here S̃ is any normalized centered section based at any point in X.
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Proof. For notational simplicity, we suppress the dependence on x and set
d = d∂S̃(x) and |ũ| = |ũ(x)|.

First, observe that
∂ũ(1

2 S̃) ⊂ BR(0).
Also, considering the cone generated by (x, ũ(x)) and S̃,

∂ũ(S̃) ⊃ K := conv(Br|ũ|(0) ∪ |ũ|d e)
for some unit vector e = e(x) and two positive constants R and r depending
only on dimension. Since the slope of the plane which determines Sch is in Y ,
0 ∈ Ỹ . By assumption, the center of S̃ is in the closure of X̃. In turn,ˆ

K
g̃ ≤
ˆ
∂ũ(S̃)

g̃ =
ˆ
S̃
f̃ ≤ C

ˆ
1
2 S̃
f̃ = C

ˆ
∂ũ( 1

2 S̃)
g̃ ≤ C

ˆ
BR(0)

g̃.

(Normalization affects neither the doubling property nor the doubling con-
stants.)

Now let Brm(tme) ⊂ conv(Br(0) ∪ 1
de) for m = 1, . . . ,M be a sequence of

balls chosen so that
1
2Km ⊂ Km \Km−1 with Km := conv(Brm(tme) ∪Br(0)) and K0 := Br(0).

By construction, {1
2Km}Mm=1 is a disjoint family, and

M = M(d)→∞ as d→ 0.
Hence, if we consider the collection

{Brm|ũ|(tm|ũ|e)}Mm=1 ⊂ K ⊂ Ỹ,

and redefine Km := conv(Brm|ũ|(tm|ũ|e)∪Br|ũ|(0)), we see that the redefined
family {1

2Km}Mm=1 is also disjoint. So

M

ˆ
Br|ũ|(0)

g̃ ≤
M∑
m=1

ˆ
Km

g̃ ≤ C
M∑
m=1

ˆ
1
2Km

g̃ ≤ C
ˆ
K
g̃.

Combing the two chains of inequalities above, we find that

M

ˆ
Br|ũ|(0)

g̃ ≤ C
ˆ
BR(0)

g̃ ≤ Ck
ˆ
Br|ũ|(0)

g̃

where
k =

⌈ log r
R |ũ|

log 1
2

⌉
.

In turn, M ≤ Ck. Solving for |ũ| concludes the proof. �

With Lemma 3.2 in hand, Theorem 1.1 follows from Caffarelli’s arguments
([4, 5]). Indeed, we first find that centered sections based at points in X have
an engulfing property. To prove this property, we replace Caffarelli’s modu-
lus for normalized solutions Cd1/n, i.e, the classical Alexandrov maximum
principle modulus, with the modulus ϑ(d) from Lemma 3.2 in his proof.
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Lemma 3.3. For any pair of constants 0 ≤ t < t ≤ 1, there exists a constant
0 < t0 ≤ 1 such that

Sct0h(z) ⊂ tSch(x)

for all x ∈ X and all z ∈ tSch(x) ∩ X. The constant t0 depends on t, t,
dimension, and the doubling constants of f and g.

Second, we obtain that u is strictly convex in X (cf., [5, Corollary 2.3]).
And, by duality and iteration, Theorem 1.1.

Corollary 3.4. A constant c > 0, depending only on dimension and the
doubling constants of f and g, exists for which

u(z) ≥ u(x) + p · (z − x) + ch

for all x ∈ X, p ∈ ∂u(x), and all z ∈ ∂Sch(x) ∩X.

Proof of Theorem 1.1. Let y, z ∈ Y , and let h > 0 be such that z ∈ ∂Sch(v, y).
By Corollary 3.4, for any q ∈ ∂v(y),

v(z) ≥ v(y) + q · (z − y) + ch.

By compactness, Sc1(v, y) ⊂ B1/τ (y) for some τ ∈ (0, 1) depending only on
the inner and outer diameters of X and Y . (See [4].)

Applying Lemma 3.3 iteratively, we see that

Sc
tj0

(v, y) ⊂ 1
2j S

c
1(v, y) for all j ∈ N for some t0 ∈ (0, 1).

Let k ∈ N such that tk+1
0 ≤ h ≤ tk0. Then

z ∈ Sc
tk0

(v, y) and |y − z| ≤ 1
τ2k .

In turn, for M ≥ log t0/ log(1/2), we deduce that

v(z) ≥ v(y) + q · (z − y) + ct0τ |y − z|M .

Therefore, as v|Y agrees with the Legendre transform of u in Y , u ∈ C1+σ(X)
for some σ ∈ (0, 1), as desired. �

Following the proof of [5, Corollary 2.2], we find a first volume product
estimate.

Corollary 3.5. Let x ∈ X and Sch(x) be a centered section for u based at
x. There is a constant r > 0, depending on dimension and the doubling
constants of f and g, such that

Br(0) ⊂ ∇ũ(S̃) ⊂ B1/r(0).

Consequently,

rnhn ≤ |Sch(x)||∇u(Sch(x))| ≤ hn

rn
.
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Remark 3.6. An implication of Corollary 3.5 is that

ϑ(d) = Cd
1
n ,

for some C > 0 depending only on dimension and the doubling constants of f
and g, is a candidate modulus for Lemma 3.2. Indeed, since rn ≤ |∇ũ(S̃)| ≤
r−n, this follows from Alexandrov’s maximum principle.

From Corollary 3.4, we also deduce that centered sections and classical
sections

Sh(u, x, p) := {z ∈ X : u(z) < u(x) + p · (z − x) + h},
where p ∈ ∂u(x), are comparable (see [7] for a proof). When u is differen-
tiable at x, the set ∂u(x) is a singleton, and we write Sh(u, x) rather than
Sh(u, x,∇u(x)). We often also suppress the dependence on u.

Corollary 3.7. There are constants c > 0, depending only on dimension,
and C ≥ 1, depending only on dimension and the doubling constants of f
and g, such that

Scch(x) ∩X ⊂ Sh(x) ⊂ ScCh(x) ∩X
for all x ∈ X.

In addition, we find that the image of (centered) sections of u of height h
are comparable to (centered) sections of v height h.

Corollary 3.8. There are constants c > 0 and C ≥ 1, depending only on
dimension and the doubling constants of f and g, such that

Sch(v,∇u(x)) ⊂ ∇u(Sh(u, x)) ⊂ SCh(v,∇u(x))
and

Scch(v,∇u(x)) ∩ Y ⊂ ∇u(Sch(u, x)) ⊂ ScCh(v,∇u(x)) ∩ Y
for any x ∈ X.

Proof. Up to a translation, we assume that x = 0. Furthermore, up to
subtracting off the tangent plane to u at 0, we assume that u(0) = 0 and
u ≥ 0.

We start with the second inclusion. Since v in Y agrees with the Legendre
transform of u and ∇u(X) = Y , ∇v(∇u(x)) = x for all x ∈ X. In particular,
∇v(∇u(0)) = 0. Moreover, v(0) = 0 and v ≥ 0. Considering Corollary 3.7
then, it suffices to show that v(∇u(x)) < Ch for all x ∈ Sch(u, 0) ∩X, which
follows from Corollary 3.5. Indeed, letting A be the John transformation
that normalizes Sch(u, 0), observe that

v(∇u(x)) = ∇u(x) · x− u(x) = h∇ũ(Ax) ·Ax− u(x) + `(x) < Ch,

as desired. (Recall Lemma 2.10.)
The first inclusion now follows from symmetry and duality. Specifically,

reversing the roles of u and v in the second inclusion and applying ∇u, we
see that

Sh(v, 0) = ∇u(∇v(Sh(v, 0))) ⊂ ∇u(SCh(u, 0)).
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Replacing h by C−1h concludes the proof. �

Finally, again following the arguments of [5, Section 3], we obtain a
uniform density estimate on centered sections as well as a second volume
product estimate, this time on (centered) sections and their images when
X is polynomially convex. For completeness, let us recall the definition of
polynomially convex and an important remark, both taken directly from [5],
which will be used in the proof of Theorem 1.2.

Definition 3.9. A domain X is polynomially convex at the origin provided
0 ∈ ∂X = {xn = ΓX(x′)} (up to a rotation) and two constants 0 < κ1, κ2 < 1
exist such that

ΓX(x′) ≤ x′ · z′

|z′|2
ΓX(z′)

whenever |x′|, |z′| ≤ δ and x′ lies in the truncated cone{
|x′| < κ1|z′|
| sin∠(x′, z′)| ≤ κ2.

Here ∠(x′, z′) denotes the angle between x′ and z′. A domain is polynomially
convex if it is polynomially convex at every point on its boundary.

Remark 3.10. In two dimensions, every convex domain is polynomially
convex. In every dimension, given a polynomially convex domain, the
constants κ1 and κ2 can be chosen uniformly for all points on its boundary
depending only on the inner and outer diameters of the domain. (See [5,
Section 3, Remark 2 and Lemma 3.1].)

Proposition 3.11. Let X be polynomially convex. Then there are constants
C ≥ 1 and c > 0, depending on the inner and outer diameters of X and Y ,
dimension, and the doubling constants of f and g, such that

C
|Sch(x) ∩X|

1
n

|Sch(x)|
1
n

≥ diam(Sch(x) ∩X)
diam(Sch(x)) ≥ c

for any x ∈ ∂X.

For the convenience of the reader, we sketch the proof of this proposition.
But first we make a remark.

Remark 3.12. The polynomial convexity of X only plays a role in proving
the first inequality, between normalized volume and normalized diameter,
but for ellipsoids centered at points in ∂X rather than centered sections.
This inequality is one about convex sets, and nothing more. In terms of the
geometry of X and Y , the remainder of the proof uses only that X and Y
are convex, and have boundaries that can be locally written as graphs of a
Lipschitz functions.

We write A ∼ B if cB ≤ A ≤ CB for some c > 0 and C > 0.
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Sketch of Proof. Let 0 ∈ ∂X and consider S = Sch(0). The first inequality is
a consequence of [5, Lemma 3.2] and the comparability of S to an ellipsoid E

centered at 0; and so, it suffices to show that the normalized diameter of S,

δ := diam(S ∩X)
diam(S) ,

cannot be too small.
From Corollary 3.5, if ri is the principle radius of E in the ei direction,

then ∇u(S) is comparable to an ellipsoid E∗ that has principle radius h/ri
in the direction ei. Let y = ∇` ∈ Y , where ` defines S. Up to a rotation, we
assume that r1 ≥ ri for all i 6= 1. Let x± ∈ ∂S be such that ν∂S(x+) = e1 and
ν∂S(x−) = −e1. In particular, ∇(`−u) at x± is parallel to e1. Since |x±| ∼ r1,
x± /∈ X if δ > 0 is sufficiently small. Hence, y± = ∇u(x±) = y ± t±e1 ∈ ∂Y
with t± ∼ h/r1.

Now ∂Y is locally the graph of a Lipschitz function in the direction ν.
Let t1 > 0 be the largest constant for which y1 := y − t1ν ∈ ∇u(S). Thus,
y1 ∈ ∂Y , as ∇u(S) ⊂ Y . Since y± ∈ ∂Y and ∂Y is Lipschitz function in
the direction ν, we find the inequality t1 ≤ Ch/r1. Let t2 > 0 be such that
y2 := y + t2ν ∈ Y ∩ ∂(∇u(S)). By Corollary 3.5, it follows that t2 ≤ Ch/r1.
Thus, if x2 = (∇u)−1(y2), then x2 ∈ ∂S ∩X. Moreover, by convexity and
Lemma 2.10,

|x2||y − y2| = |x2||∇(`− u)(x2)| ≥ (`− u)(0) = h.

In turn, |x2| ≥ r1/C. But this contradicts δ > 0 being arbitrarily small. �

Corollary 3.13. Let X be polynomially convex. Then constants C ≥ 1
and c > 0 exist, depending on the inner and outer diameters of X and Y ,
dimension, and the doubling constants of f and g, for which

chn ≤ |Sch(x) ∩X||∇u(Sch(x))| ∼ |Sh(x)||∇u(Sh(x))| ≤ Chn

for any x ∈ ∂X.

4. The Flat Case

Let u be convex and such that
(4.1) (∇u)#d

α
∂{xn>0} = dβ∂{yn>0},

for two nonnegative constants α and β. Then, by the arguments of Section 3
and classical regularity theory for the Monge–Ampère equation, we find
that u is strictly convex in {xn ≥ 0}, u ∈ C1,σ

loc ({xn ≥ 0}) ∩ C∞loc({xn > 0}),
un ≥ 0, and solves

(4.2) detD2u = xαn

uβn
in {xn > 0} and un = 0 on {xn = 0}.

From this point forward, in this section, we assume that max{α, β} > 0. If
α = β = 0, then u must be a quadratic polynomial by the classical Liouville
theorem for the Monge–Ampère equation; indeed, its even reflection over the
set {xn = 0} solves detD2u = 1 in Rn.
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First, we prove a Pogorelov estimate in x′, which holds up to {xn = 0}.

Proposition 4.1. Let u be convex and satisfy un ≥ 0 in {xn > 0} and
(4.2). Let x0 ∈ {xn = 0} and `x0 be the tangent plane to u at x0. For any
tangential direction e, i.e., such that e · en = 0,
(4.3) uee|u− `x0 − h| ≤ C(n+ β, ‖∂eu− ∂e`x0‖L∞(Sh(x0))).

Proof. Up to a translation and subtracting off the tangent plane to u at x0, we
assume that x0 = 0 and u(0) = ∇u(0) = 0. Now let ε > 0, Υ := B∩{yn > 0},
for some large ball B centered at the origin, and Ω be a dilation of (∇u)−1(Υ)
such that ˆ

Ω
(xn + ε)α =

ˆ
Υ

(yn + ε)β.

Furthermore, let ∇ψ be the optimal transport taking f = (xn + ε)α Ω
to g = (yn + ε)β Υ. Note that the even reflection in xn of ψ, call it
ψ̄, is a potential whose gradient is the optimal transport taking the even
reflection of f to the even reflection of g, in xn and yn respectively. So points
along {xn = 0} can be turned into interior points. By [3] and symmetry,
D2ψ̄ is locally Hölder continuous in Ω̄, the reflection of Ω over the xn-axis,
∇ψ̄(Ω) ⊂ {yn > 0}, and ψ̄n = 0 on Ω̄ ∩ {xn = 0}. In particular, we find that

(4.4) detD2ψ = (xn + ε)α

(ψn + ε)β in Ω,

(4.5) ψn = 0 on {xn = 0},
and ψ is smooth in Ω and D2ψ is Hölder continuous and strictly positive
definite up to {xn = 0}. By Theorem 1.1, ∇ψ converges to ∇u locally
uniformly in Ω̄ ∩ {xn ≥ 0}. (We can choose doubling constants for the
denisites (xn + ε)α and (yn + ε)β unifornly in ε.) So it suffices to prove (4.3)
for ψ.

If we differentiate the log of (4.4) and (4.5) in any tangential direction e
(with e · en = 0), we have that

(4.6) ψij∂ijψe = −β ψne
ψn + ε

in {xn > 0}

and
∂nψe = 0 on {xn = 0}.

The right-hand side of this equation is Hölder continuous. Hence, D2ψe is
Hölder continuous across {xn = 0}. Differentiating again in the e direction,
we find that

(4.7) ψij∂ijψee = β
ψ2
ne

(ψn + ε)2 − β
ψnee
ψn + ε

+ ψikψjlψijeψkle

and
∂nψee = 0 on {xn = 0}.

The right-hand side of this equation is Hölder continuous, given the Hölder
continuity of D2ψe just observed. In conclusion, the fourth order derivatives
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ψ̄ijkl are continuous across {xn = 0} provided no more than two of the four
indices are n. And so,

M := log |ψ̄|+ log ψ̄ee + 1
2 ψ̄

2
e

is C2(S) with S = Sh(ψ̄, 0). The ball B is chosen large enough so that
Sh(ψ̄, 0) b Ω̄. Furthermore, up to subtracting off the tangent plane to ψ̄ and
h, we can assume that that S = {ψ̄ < 0}.

Let z ∈ {ψ̄ < 0} be a point at which M achieves its maximum. (The
point z /∈ {ψ̄ = 0} since eM vanishes on {ψ̄ = 0}.) As ψ̄ is even in xn, we
can assume that z ∈ {xn ≥ 0}. So for notational simplicity, we identify ψ̄
with ψ.
Case 1: M is achieved at z ∈ {xn = 0}. By (4.5), at z,

ψni = 0 for all i < n.

So, after an orthogonal transformation in the tangential coordinates, which
leaves the equation invariant, we can assume that D2ψ(z) is diagonal and
e = e1. (While the equality ψni|{xn=0} = 0 simplifies some of the expressions
below, we refrain from using it, so that Case 2 becomes evident.)

First, differentiating M twice in the ei and evaluating at z, we find

(4.8) ψi
ψ

+ ψ11i
ψ11

+ ψ1ψ1i = 0

and
ψii
ψ
− ψ2

i

ψ2 + ψ11ii
ψ11

− ψ2
11i
ψ2

11
+ ψ2

1i + ψ1ψ1ii ≤ 0.

So multiplying by ψii = ψ−1
ii and summing over i, we deduce that

(4.9) n

ψ
− ψiiψ2

i

ψ2 + ψiiψ11ii
ψ11

− ψiiψ2
11i

ψ2
11

+ ψ11 + ψ1ψ
iiψ1ii ≤ 0.

Second, considering (4.6), (4.7), and (4.9), we have that

n

ψ
− ψiiψ2

i

ψ2 − βψn11
(ψn + ε)ψ11

+
ψiiψjjψ2

1ij
ψ11

− ψiiψ2
11i

ψ2
11

+ ψ11 −
βψ1ψn1
ψn + ε

≤ 0.

Third,
ψiiψjjψ2

1ij
ψ11

− ψiiψ2
11i

ψ2
11

= 1
ψ11

n∑
i=2,j=1

ψ2
1ij

ψiiψjj
,

and, by (4.8), we find that
ψiiψjjψ2

1ij
ψ11

− ψiiψ2
11i

ψ2
11
≥

n∑
i=2

ψ2
i

ψiiψ2 .

Our first three steps together yield
n

ψ
− ψ2

1
ψ11ψ2 −

β

ψn + ε

(
ψn11
ψ11

+ ψ1ψn1

)
+ ψ11 ≤ 0.
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Now from (4.8) again, i.e.,
ψ11n
ψ11

+ ψ1ψn1 = −ψn
ψ
,

it follows (recall ψ < 0 and ψn = 0 at z) that

n

ψ
− ψ2

1
ψ11ψ2 + ψ11 = 1

ψ

(
n+ β

ψn
ψn + ε

)
− ψ2

1
ψ11ψ2 + ψ11 ≤ 0.

Consequently,
|ψ|ψ11 ≤ C(n, ‖ψ1‖L∞(S)).

Case 2: M is achieved at z ∈ {xn > 0}. In this case, after a rotation
e 7→ e1, a shearing transformation x 7→ (x1−sixi, x2, . . . , xn) for i = 2, . . . , n,
and then a rotation in the xi variables for i > 1, we can assume D2ψ(z) is
diagonal provided we replace (4.4) and (4.5) with

(4.10) detD2ψ = (x · 8ξ + ε)α

(ψξ + ε)β in {x · 8ξ > 0} with 8ξ · e1 = 0, |ξ| = 1,

and

(4.11) ψξ := snψ1 + ψ8ξ = snψ1 +∇ψ · 8ξ = 0 on {x · 8ξ = 0}.

Identical computations to those in Case 1 yield the same final inequality:
n+ β

ψ
− ψ2

1
ψ11ψ2 + ψ11 ≤

1
ψ

(
n+ β

ψξ
ψξ + ε

)
− ψ2

1
ψ11ψ2 + ψ11 ≤ 0,

from which (4.3) follows for ψ, as desired. �

A an important consequence of Proposition 4.1 (applied to u and v the
Legendre transform of u) is that un and xγn are comparable. Recall,

γ := 1 + α

1 + β
.

Since the rescalings

(4.12) ut(x) := u(Dtx)
t

with Dt := diag(t
1
2 Id′, t

1
1+γ )

leave the equation invariant, the correct geometry in which to work is defined
by the cylinders

Cr(z) := B′r1/2(z′)× (zn − r
1

1+γ , zn + r
1

1+γ ) and Cr := Cr(0).

We state our comparability estimate in this geometry.

Lemma 4.2. Let u be convex and satisfy (4.1). Then two constants c0 > 0
and C0 > 0, depending on ‖∇x′u‖L∞(C1∩{xn≥0}), ‖∇y′v‖L∞(∇u(C1∩{xn≥0})),
α, β, and n, exist such that

(4.13) c0 ≤
un
xγn
≤ C0 on C1 ∩ {xn ≥ 0}.
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Proof. We claim that if

D2
x′u(0) ≥ 1

M
Id′ (or ≤M Id′),

then
un(0, xn) ≤ C(M)xγn (or ≥ c(M)xγn).

Before proving this claim, we use it to conclude the proof of our lemma. Up
to subtracting the tangent plane to u at 0, assume that u ≥ 0. Then, as 0
was arbitrary, our lemma follows, since Proposition 4.1 (applied to u and v
the Legendre transform of u) tells us that

1
M

Id′ ≤ D2
x′u ≤M Id′ in B′1 × {0}.

Now we prove our claim. First, we show that Sh(0) is comparable to an
ellipsoid whose axes are parallel to the coordinate axes. Indeed, let

li;h = li;h(u, 0) := − inf{xi : (xi, 0) ∈ Sh(u, 0)}

and
ri;h = ri;h(u, 0) := sup{xi : (xi, 0) ∈ Sh(u, 0)}.

By Corollary 3.7,

cli;h ≤ ri;h ≤
li;h
c

for some c ≤ 1, depending only on α, β, and n. Now define

wi;h := ri;h + li;h

and
dh = dh(u, 0) := sup{xn : (0, xn) ∈ Sh(u, 0)},

and consider

Ti;h := the triangle determined by (0, dh) and (±min{ri;h, li;h}, 0).

(The center of mass of Ti;h is (0, 1
3dh).) Note that Sh(0) ∩ span{ei, en} is

contained in the union of the subgraphs of the lines determined by (0, dh)
and (±min{ri;h, li;h}, 0) and inside the strip [−li;h, ri;h]× [0,∞). The heights
of the intersections of these lines and the boundary of the strip is less than
or equal to dh(1 + c−1), from which find a C ≥ 1, depending only on α, β,
and n, such that CTi;h ⊃ Sh(0) ∩ span{ei, en}. In turn, if Eh is the John
ellipsoid of conv{∪i<nTi;h}, then

(4.14) δEh ⊂ Sh(0) ⊂ 1
δ
Eh,

for some 0 < δ < 1 depending only on c. The ellipsoid Eh has axes parallel
to the coordinate axes, and is our desired ellipsoid.

Since Eh has axes parallel to the coordinate axes the distance from its
center to ∂{xn > 0} is the vertical height of the center, which is comparable



18 Y. JHAVERI AND O. SAVIN

to dh. Then arguing as in Lemma 2.6, but using the ellipsoid just constructed
above, we see that

1
C
dαhdhw1;h · · ·wn−1;h ≤

ˆ
Sh(u)

(xn)α+ ≤ Cdαhdhw1;h · · ·wn−1;h.

And, as Sh(v) is dual to Sh(u) (Corollary 3.8), we similarly find that
1
C

hβ

dβh

h

dh

h

w1;h
· · · h

wn−1;h
≤
ˆ
Sh(v)

(yn)β+ ≤ C
hβ

dβh

h

dh

h

w1;h
· · · h

wn−1;h
.

Moreover, by Lemma 3.1 and Corollary 3.8, again,ˆ
Sh(u)

(xn)α+ ∼
ˆ
Sh(v)

(yn)β+.

Therefore,

(4.15) 1
C
≤
d2+α+β
h w2

1;h · · ·w2
n−1;h

hn+β ≤ C.

By assumption, for all i ≤ n− 1,
w2
i;h ≤ 2Mh.

In turn, h1+β ≤ CMn−1d2+α+β
h , or, equivalently,

h
1

1+γ ≤ CM
n−1

2+α+β dh.

Thus, C(M)x1+γ
n ≥ u(0, xn) ≥ 0. So our claim follows by the convexity of u;

indeed,
C(M)21+γx1+γ

n ≥ u(0, 2xn) ≥ u(0, 2xn)− u(0, xn) ≥ un(0, xn)xn.
�

Lemma 4.2 effectively gives us control over the second derivatives of u in
the normal direction. And since un/xγn is a solution to an elliptic equation,
with Lemma 4.2 in hand, we can prove an oscillation decay estimate for
un/x

γ
n. In particular,

φ := un
xγn

solves
uijφij + βxnδ

in + (1 + γ)unuin

xnun
φi = 0.

Here δij = 0 if i 6= j and δij = 1 if i = j.

Proposition 4.3. Let u be convex and satisfy (4.1). A constant ζ ∈ (0, 1)
exists, depending only on α, β, and n, such that

(4.16) oscC1/2∩{xn≥0}
un
xγn
≤ (1− ζ) oscC1∩{xn≥0}

un
xγn
.

(A similar and simpler version of the proof of this proposition can be
found in the proof of Lemma 6.3.)
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Proof. From (4.13),

either un
xγn

(2−
1

1+γ en) < C0 + c0
2 or un

xγn
(2−

1
1+γ en) ≥ C0 + c0

2 .

If the first inequality holds, we build a barrier that pulls un/xγn down in C1/2.
Whereas if the second inequality holds, we build a barrier that pulls un/xγn
up in C1/2.
Case 1: α < β. If the first inequality holds, up to dividing by C0, assume

that C0 = 1. Then let
ψ := (1− ε)xγn + c1ε|x′|2 − εxκn

with c1 > 0 and 1 > κ > γ to be chosen. (This is our upper barrier.) First,
note that

ψ ≥ xγn on {xγn ≤ c1
2 |x
′|2}.

Second, given any δ ∈ (0, 2−
1

1+γ ), applying the Harnack inequality to un/xγn
along a chain of overlapping balls, we find that

sup
C1/2∩{xn≥δ}

un ≤ (1− c(δ))xγn,

for some small c(δ) > 0. Third, let δ be small enough to ensure that

Ω := {xγn > c1
2 |x
′|2} ∩ {xn < δ} ⊂ C1/2 ∩ {xn ≥ 0}.

Set
ε := c(δ).

Then
ψ ≥ un on ∂Ω.

With our boundary values understood, we now turn to the interior of Ω and
the equation.

Suppose that un − ψ achieves its maximum at some point in Ω. Then, at
this point, un = ψ + s for some s ≥ 0, and

(4.17) 0 ≥ uij∂ij(un − ψ) ≥ α

xn
− βψn

ψ
− uiiψii.

Using that ∇un = ∇ψ at our distinguished point, we show that (4.17) is
impossible provided δ > 0 is sufficiently small, which forces our distinguished
point to be very close to {xn = 0}.

First, we compute an upper bound for the quotient ψn/ψ. Observe that
ψn
ψ
≤ (1− ε)γxγ−1

n − εκxκ−1
n

(1− ε)xγn − εxκn
= γ

xn

(1− ε)xγn − εκγ−1xκn
(1− ε)xγn − εxκn

.

Now we look at the sum uiiψii, which we break into two pieces: unnψnn and
the remainder. First, observe that∑

i<n

uiiψii = 2c1ε tr(D2
x′u)−1.



20 Y. JHAVERI AND O. SAVIN

From Proposition 4.1 (applied to u and its Legendre transform), we have
that

1
C ′
≤ (D2

x′u)−1 ≤ C ′.

Therefore, choose
c1 := 1

2C ′(n− 1) .

Hence,
−
∑
i<n

uiiψii ≥ −ε.

Now considering D2u as a block matrix, we see that

unn = 1
unn −∇x′un(D2

x′u)−1∇x′un
≥ 1
unn

;

and so, provided δ > 0 is small enough so that ψnn ≤ 0,

−unnψnn ≥ −
γ − 1
xn

(1− ε)xγn − εκγ−1(κ− 1)(γ − 1)−1xκn
(1− ε)xγn − εκγ−1xκn

.

In turn, we have the following inequality, for the right-hand side of our
equation,

α

xn
− βψn

ψ
− uiiψii ≥

α

xn
− βγ

xn
I− γ − 1

xn
II− ε

with

I := (1− ε)xγn − εκγ−1xκn
(1− ε)xγn − εxκn

and

II := (1− ε)xγn − εκγ−1(κ− 1)(γ − 1)−1xκn
(1− ε)xγn − εκγ−1xκn

.

As
α− βγ = γ − 1,

we rearrange our lower bound as follows, splitting II into two pieces:
α

xn
− βγ

xn
I− γ − 1

xn
II = α

xn
(1− II) + βγ

xn
(II− I).

Now we estimate the two factors, above, in parentheses. Observe that

1− II ≥ − ε

1− εC0,κ,γx
κ−γ
n (1 + C̄εxκ−γn )

with
C0,κ,γ := κ(κ− γ)

γ(1− γ) > 0.

(Here and below C̄ > 0 is a large constant that may change from line to line;
it depends only on κ and γ.) Similarly,

II− I ≥ ε

1− εC1,κ,γx
κ−γ
n (1− C̄εxκ−γn )
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with
C1,κ,γ := (κ− γ)(1 + κ− γ)

γ(1− γ) > 0.

Finally, we conclude. From above,
α

xn
− βγ

xn
I− γ − 1

xn
II ≥ ε

1− ε
C0,κ,γ
κ

xκ−γ−1
n ((βγ + κ)(1− γ)− C̄ε).

Then, considering (4.17) and choosing ε > 0 sufficiently small depending
only on κ and γ, we find the inequality

0 ≥ δκ−γ−1 − C̄,
which is impossible once δ > 0 is sufficiently small, as desired.

Consequently,
ψ ≥ un in C1/2 ∩ {xn ≥ 0}.

In particular,
(1− ε)xγn ≥ un along {x′ = 0}.

Translating the barrier ψ to any z ∈ C1/2∩{xn = 0} and repeating the above
argument, we find that

(1− ε)xγn ≥ un in C1/2 ∩ {xn ≥ 0}.
If, on the other hand, the second inequality holds, up to dividing by c0

(so that c0 = 1), consider

ψ := (1 + ε)xγn − c1ε|x′|2 + εxκn.

An analogous argument proves that
(1 + ε)xγn ≤ un in C1/2 ∩ {xn ≥ 0}.

In summary, (4.16) holds in Case 1.
Case 2: α = β. Setting κ = 2 from the start, and following the same line

of reasoning proves this case.
Case 3: α > β. By duality, consider v (the Legendre transform of u).

Reversing the roles of α and β, and applying the arguments of Case 1 and 2
proves this case. �

Iterating Proposition 4.3 (rescaling C1/2 to C1 leaves things unchanged), we
find that un/xγn is Hölder continuous at the origin. Translating this argument
to other boundary points yields that un/xγn is locally Hölder continuous up
to {xn = 0}. In particular, we have the following corollary.

Corollary 4.4. Let u be convex and satisfy (4.1). A constant χ ∈ (0, 1)
exists, depending only on α, β, and n, such that[

un
xγn

]
C0,χ(C1∩{xn≥0})

≤ C(α, β, n, ‖un/xγn‖L∞(C1∩{xn≥0})).

From Corollary 4.4, we deduce Theorem 1.4.
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Proof of Theorem 1.4. By Proposition 4.1, duality, and Lemma 4.2, there
exists an M > 0 such that

1
M

Id′ ≤ D2
x′u ≤M Id′ and 1

M
≤ un
xγn
≤M in B′1 × {0}.

After subtracting off the tangent plane to u at any point in C1 ∩ {xn = 0}
and a translation, if we can show that
(4.18) C1/R ∩ {xn ≥ 0} ⊂ S = {ψ < 1} ⊂ CR ∩ {xn ≥ 0} with ψ := ut,

for some R = R(M) > 0, then (since un = 0 on {xn = 0})∥∥∥∥∂nutxγn

∥∥∥∥
L∞(C1∩{xn≥0})

=
∥∥∥∥ψnxγn

∥∥∥∥
L∞(C1∩{xn≥0})

≤ C(M).

(Recall that ut is the rescaling of u defined in (4.12).) Therefore, by Corol-
lary 4.4 and scaling,[

un
xγn

]
C0,χ(Ct∩{xn≥0})

≤ C(M)
min{t

χ
2 , t

χ
1+γ }

→ 0 as t→∞.

Hence, un/xγn is constant in {xn ≥ 0}. In turn, detD2
x′u is constant in {xn >

0}. So, by Jörgens, Calabi, and Pogorelov’s Liouville theorem ([6, 21, 26]),
u(x) = P (x′) + px1+γ

n

for some uniformly convex quadratic polynomial P , proving the theorem.
Now we prove (4.18). By the arguments of Lemma 4.2, we find that the

linear map A that normalizes the pair (ψ, S) is such that

A = diag(A′, a) and 1
C
≤ (detA)2aα+β ≤ C,

for some C > 0, depending only on α, β, and n. Let
ψ̃(x) := ψ(A−1x),

so that
(4.19) B1(0) ⊂ S̃ := A(S) ⊂ Bn3/2(0) and ∇ψ̃(S̃) ⊂ B1/r(0),
for some r > 0, depending only on α, β, and n. The inclusion concerning
the gradient of ψ̃ follows from Corollary 3.5 and Corollary 3.7. So, by
Proposition 4.1 and duality,

1
M̃

Id′ ≤ D2
x′ψ̃(0) ≤ M̃ Id′ .

Furthermore, by Lemma 4.2,
1

C(M̃)
≤ ψ̃n
xγn

(0) ≤ C(M̃).

Here and above M̃ > 0 and C(M̃) > 0 depend only on α, β, and n. It follows
that

1
MM̃

Id′ ≤ (A′)tA′ ≤MM̃ Id′ and 1
MC(M̃)

≤ a ≤MC(M̃).
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These inequalities, by [13, Lemma A.4], imply that
|A|, |A−1| ≤ C(M).

In turn, from (4.19) we deduce (4.18), as desired. �

5. Flat Implies Smooth

In this section, we prove a pointwise “flat implies smooth” result. Be-
fore doing so, we reintroduce and introduce some notation essential to the
statements and proofs of this section.

Recall,

Cr(z) = B′r1/2(z′)× (zn − r
1

1+γ , zn + r
1

1+γ ) and Cr = Cr(0).
Let

λ := λ+ 2
1 + γ

= 1 + λ+ 1− γ
1 + γ

and λ := λ+ 2γ
1 + γ

= 1 + λ− 1− γ
1 + γ

.

Also, letX be an open set whose boundary in C1 is defined by be a nonnegative
function ΓX = ΓX(x′) on Rn−1:

X ∩ C1 = {xn > ΓX(x′)} ∩ C1 and ∂X ∩ C1 = {xn = ΓX(x′)} ∩ C1.

Set
U(x) := |x

′|2

2 + γ
β

1+β
x1+γ
n

(1 + γ)γ .

Finally, define

C∗r(z) := B′r1/2(z′)× (zn − r
γ

1+γ , zn + r
γ

1+γ ) and C∗r := C∗r(0).

Proposition 5.1. Assume that X is convex with 0 ∈ ∂X. Let Y ⊂ {yn > 0}
be an open set with 0 ∈ ∂Y , and assume further that

(5.1) 0 ≤ xn ≤ δε|x′|λ on ∂X ∩ C2 and 0 ≤ yn ≤ δε|y′|λ on ∂Y ∩ C∗1/ρ.

Suppose that u ∈ C1(X ∩ C2) is a convex function such that
(5.2) u(0) = 0 = |∇u(0)|,
un ≥ 0, and

∇u(∂X ∩ C1) ⊂ ∂Y ∩ C∗1/ρ.

In X ∩ C1, assume that

1− δε|x|µ

1 + δε|∇u|ω
(xn − 2δε|x′|λ)α+

uβn
≤ detD2u ≤ 1 + δε|x|µ

1− δε|∇u|ω
xαn

(un − 2δε|∇x′u|λ)β+
.

Furthermore, suppose that
|u− U | ≤ ε in X ∩ C2.

If δ, ε, ρ > 0 are sufficiently small, then

|u(Rx)− U | ≤ Cε(|x′|2 + x1+γ
n )1+λ

2

for some R = diag(R′, rn).
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Our proposition will follow from an iteration of an improvement of flatness
lemma. In order to state it, however, we need to define one more object:

Uτ ′(x) := U(x) + τ ′ · x′ so that U0 = U.

Also, recall,
Dh := diag(h

1
2 Id′, h

1
1+γ ).

Lemma 5.2. Let 0 ∈ ∂X and assume that

(5.3) 0 ≤ xn ≤ δε on ∂X ∩ C1.

Furthermore, let u ∈ C1(X ∩ C1) be convex and such that

(5.4) u(0) = 0,

un ≥ 0, and

(5.5) 0 ≤ un ≤ δε on ∂X ∩ C1.

Suppose that
1− δε
1 + δε

(xn − δε)α+
uβn

≤ detD2u ≤ 1 + δε

1− δε
xαn

(un − δε)β+
in X ∩ C1.

For any 0 < λ < 1, there exist constants δ0 > 0, ε0 > 0, and h0 > 0 such
that the following holds: if

|u− Uτ ′ | ≤ ε in X ∩ C1,

then
|ũ− Uτ̃ ′ | ≤ h

λ
2
0 ε in X̃ ∩ C2

provided 0 < δ ≤ δ0 and 0 < ε ≤ ε0. Here

ũ(x) := u(QDh0x)
h0

, τ̃ ′ :=
(Q′D′h0

)t(τ ′ + q′)
h0

, and X̃ := (QDh0)−1X

for some Q and q′ such that

Q = diag(Q′, qn) and |Q− Id |, |q′| ≤ C0ε

and

(5.6) qα+β
n (detQ)2 = 1.

To prove our improvement of flatness lemma, we approximate u− Uτ ′ by
a solution to the Grushin type equation with singular drift Lw = 0 where L
is defined by

Lw := γ
β

1+β xγ−1
n ∆x′w + wnn + βγ

wn
xn
,

which with the Neumann condition wn = 0 on {xn = 0} has a rather nice
regularity theory (see [11]).
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Proof. Let
uε := u− Uτ ′

ε
.

Step 1: We show that uε is well-approximated near the origin by a
solution w to the linearized equation

(5.7)
{
Lw = 0 in C1/4 ∩ {xn > 0}
wn = 0 on C1/4 ∩ {xn = 0}

in the viscosity sense. In other words, for any η > 0, a solution w to (5.7) in
C1/4 ∩ {xn > 0} exists such that

|uε − w| ≤ η in X ∩ C1/4

provided δ0, ε0 > 0 are sufficiently small, depending on η, ρ, n, α, and β.
Step 1.1: First, we derive the linearized equation.
To this end, by convexity, observe that if x+ te ∈ X ∩ C1, then

(∇u(x)−∇Uτ ′(x)) · te ≤ 2ε+ (∇Uτ ′(x+ te)−∇Uτ ′(x)) · te;
in particular,

|un(x)− Un(x)| ≤ 2ε
1
2 + Cγ max{ε

γ
2 , ε

1
2 }.

Consequently, un → ∂nUτ ′ = Un uniformly in compact subsets of X ∩ C1 as
ε→ 0. Moreover,

detD2u− detD2Uτ ′ = tr(AεD2(u− Uτ ′)),
with

Aε :=
ˆ 1

0
cof(D2U + t(D2u−D2U)) dt.

Since det1/n is concave on symmetric, positive semi-definite n× n matrices,

(detAε)1/n ≥
ˆ 1

0
(t(detD2u)1/n + (1− t)(detD2U)1/n) dt.

Therefore, (detAε)1/n is strictly positive and bounded on compact subsets
of X ∩ C1. Furthermore,

xαn

(un − δε)β+
− xαn

Uβn
= xαn

uβn
− xαn

Uβn
+ xαn

(un − δε)β+
− xαn

uβn

= −xαn
ˆ 1

0
β

un − Un
(Un + t(un − Un))1+β dt+ xαn

(un − δε)β+
− xαn

uβn
.

And so,
1 + δε

1− δε
xαn

(un − δε)β+
− xαn

Uβn
≤ b+ε ∂n(u− Uτ ′) + c+

δ ε

with
b+ε → −β

xαn

U1+β
n

as ε→ 0 and c+
δ → 0 as δ → 0
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locally uniformly in X ∩ C1. Similarly,
1− δε
1 + δε

(xn − δε)α+
uβn

− xαn

Uβn
≥ b−ε ∂n(u− Uτ ′) + c−δ ε

with
b−ε → −β

xαn

U1+β
n

and c−δ → 0

uniformly in compact subsets of X ∩ C1 as ε, δ → 0, respectively. In turn,
by the ABP estimate and Schauder theory, D2u → D2Uτ ′ = D2U locally
uniformly in X ∩ C1 as ε→ 0. Hence,

Aε → cof D2U = diag(γ
β

1+β xγ−1
n Id′, 1)

as ε→ 0 uniformly in compact subsets of X ∩ C1.
Step 1.2: Second, we show that uε is uniformly Hölder continuous in an

appropriate sense up to C1/4 ∩ {xn = 0} as δ, ε→ 0.
To start, we claim that two small constants c0 > 0 and δ0 > 0 exist such

that the following holds: for all δ ≤ δ0, if
oscX∩C1 uε ≤ 2,

then
oscX∩C1/2 uε ≤ 2(1− c0).

We prove this claim with a barrier argument. For every z ∈ ∂X ∩ C1/2,
define

φz(x) := −1 + c2

(
1 + 2C1γ

β
1+β

x1+γ
n

(1 + γ)γ + xn − C1
|x′ − z′|2

2

)
and

φz(x) := 1− c2

(
1 + 2C1γ

β
1+β

(xn − δε)1+γ
+

(1 + γ)γ − C1
|x′ − z′|2

2

)
,

for C1 � 1 and c2 � 1 with c2C1 � 1 to be chosen (uniformly in z). Also,
let

F+
δ,ε(D

2ψ,∇ψ, x) := (1− δε)(ψn − δε)β+ detD2ψ − (1 + δε)xαn
and

F−δ,ε(D
2ψ,∇ψ, x) := (1 + δε)ψβn detD2ψ − (1− δε)(xn − δε)α+.

Finally, define
wz := Uτ ′ + εφz

and

wz := |x
′|2

2 + γ
β

1+β
(xn − δε)1+γ

+
(1 + γ)γ + εφz + τ ′ · x′.

First, we show that if δ > 0 is small enough (and ε < 1), then
F+
δ,ε(D

2wz,∇wz, x) ≥ 0 ≥ F+
δ,ε(D

2u,∇u, x) in X ∩ C1

and
F−δ,ε(D

2wz,∇wz, x) ≤ 0 ≤ F−δ,ε(D
2u,∇u, x) in X ∩ C1.
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Indeed, if δ ≤ c2 (recalling that c2C1 � 1 and C1 � 1), then

F+
δ,ε(D

2wz,∇wz, x) ≥ [(1− δε)(1− c2C1ε)(1 + c22C1ε)− (1 + δε)]xαn ≥ 0

and

F−δ,ε(D
2wz,∇wz, x) ≤ [(1+δε)(1+c2C1ε)(1−c22C1ε)−(1−δε)](xn−δε)α+ ≤ 0.

Second, we address the boundary data. Note that

either uε(2−
1

1+γ en) > 0 or uε(2−
1

1+γ en) ≤ 0.

In the first case, we prove that

u ≥ wz on X ∩ ∂C1/8(z) and ∂nwz ≥ ∂nu on ∂X ∩ C1/8(z).

While, in the second case, we prove that

u ≤ wz on X ∩ ∂C1/8(z) and ∂nu ≥ ∂nwz on ∂X ∩ C1/8(z).

In the first case, fix some small distance d̄ > δε, depending only on γ. If C1 is
sufficiently large, depending only on γ, then φz ≤ −1 on ∂C1/8(z)∩{xn ≤ d̄}.
Hence, wz ≤ u here. By the Harnack inequality, choosing c2 > 0 small, we
can ensure that wz ≤ u on the remainder of X ∩ ∂C1/8(z). Also, by (5.5),
once again if δ ≤ c2,

∂nwz = Un + εc22C1Un + εc2 ≥ εc2 ≥ ∂nu on ∂X ∩ C1/8(z).

In the second case, a similar Harnack inequality argument, yields the required
inequality along X ∩ ∂C1/8(z). Also, by (5.3),

∂nw
z = γ

− 1
1+β (1− εc22C1)(xn − δε)γ+ = 0 ≤ ∂nu on ∂X ∩ C1/8(z).

By the maximum principle then, one of the two inequalities

wz ≤ u ≤ wz in X ∩ C1/8(z)

holds for all z ∈ ∂X ∩ C1/2, from which the claim follows with c0 = c2/2.
Iterating the claim, we find that if ε < 1/2k−1 and δ0 > 0 is small, then

oscX∩C2−k
uε ≤ 2(1− c0)k.

Thus, after translating the above argument to any point x0 ∈ ∂X ∩ C1/4, we
see that uε converges uniformly in C1/4 ∩ {xn ≥ 0}, as ε and δ tend to zero,
to some function w that solves

Lw = γ
β

1+β xγ−1
n ∆x′w + wnn + βγ

wn
xn

= 0 in {xn > 0} ∩ C1/4

in the viscosity sense (and so, classically by elliptic theory).
Step 1.3: Third, we show that the Neumann condition wn = 0 is satisfied

in the viscosity sense as defined in [11, Definition 7.1] on C1/4 ∩ {xn = 0}.
If βγ ≥ 1, then wn = 0 on {xn = 0} in the viscosity sense since |w| ≤ 1.

This bound is a consequence of Step 1.2.
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When βγ < 1, we show that w can neither be touched from above at any
point on C1/4 ∩ {xn = 0} by any test function of the form

A

2 |x
′ − z′|2 +B + 2px1−βγ

n

where z′ ∈ Rn−1, A,B ∈ R, and

p < 0

(making w a viscosity subsolution) nor be touched from below at any point
on C1/4 ∩ {xn = 0} by any test function of the form

A

2 |x
′ − z′|2 +B + 2px1−βγ

n

where z′ ∈ Rn−1, A,B ∈ R, and

p > 0

(making w a viscosity supersolution).
Suppose, to the contrary, that w can be touched from below at some

x0 = (x′0, 0) ∈ C1/4 ∩ {xn = 0} by

A

2 |x
′ − z′|2 +B + 2px1−βγ

n

for some z′ ∈ Rn−1, A,B ∈ R, and p > 0. Since βγ < 1, we can touch w at
x0 from below strictly by

φ(x) := A

2 |x
′ − z′|2 +B + γ

β
1+β

(1 + γ)γCx
1+γ
n + pxn

with any C ∈ R. Since uε → w uniformly as ε, δ → 0,

Φ := Uτ ′ + ε(φ+ cε,δ)

touches u from below strictly at some xε ∈ X. Arguing as in Step 1.2, we
find that

F+
δ,ε(D

2Φ(xε),∇Φ(xε), xε) > 0

provided 0 < δ, ε� 1 and C � 1 (since p > 0). But then

0 ≥ F+
δ,ε(D

2u(xε),∇u(xε), xε) ≥ F+
δ,ε(D

2Φ(xε),∇Φ(xε), xε) > 0,

which is impossible. (The first inequality is an assumption on u, and the
middle inequality holds since Φ touches u from below.) On the other hand,
suppose, to the contrary, that w can be touched from above at some x0 =
(x′0, 0) ∈ C1/4 ∩ {xn = 0} by

A

2 |x
′ − z′|2 +B + 2px1−βγ

n
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for some z′ ∈ Rn−1, A,B ∈ R, and p < 0. Since βγ < 1, we can touch w at
x0 from above strictly by

φ(x) := A

2 |x
′ − z′|2 +B + γ

β
1+β

(1 + γ)γC(xn − δε)1+γ
+ + pxn

with any C ∈ R. Since uε → w uniformly as δ, ε→ 0,

Φ := |x
′|2

2 + γ
β

1+β
(xn − δε)1+γ

+
(1 + γ)γ + τ ′ · x′ + ε(φ+ cε,δ)

touches u from below strictly at some xε ∈ X. Arguing as in Step 1.2, we
find that

F−δ,ε(D
2Φ(xε),∇Φ(xε), xε) < 0

provided 0 < δ, ε� 1 and C � −1 (since p < 0). But again this inequality
is impossible.

Step 2: Now we find the transformation Q and prove (5.6).
An application of the arguments of [11, Section 7.1] yields that w ∈

C1+γ
loc (C1/4 ∩ {xn ≥ 0}). In particular, wn = 0 is satisfied in the classical

sense. Moreover, Dk
x′w ∈ C

1+γ
loc (C1/4 ∩ {xn ≥ 0}). Also, since w is the limit

of a sequence of functions that vanish at the origin (by (5.4)),

w(0) = 0.

In turn, by Taylor’s theorem and (5.7),

w(x) = p′ · x′ + 1
2P
′x′ · x′ + Cγpnx

1+γ
n +O(|x′|3 + x2+2γ

n + |x′|x1+γ
n )

where
|p′|, |P ′|, |pn| ≤ C;

in particular,

pn = − trP ′

1 + β
and Cγ = γ

β
1+β

(1 + γ)γ .

It follows that, if 0 < δ, ε� 1,∣∣∣∣u−Uτ−ε(p′ ·x′+ 1
2P
′x′ ·x′+Cγpnx1+γ

n

)∣∣∣∣ ≤ εη+εC(|x′|3+x2+2γ
n +|x′|x1+γ

n ).

So

|u(Q̃′x′, q̃nxn)−U(x)− (τ ′ + q′) · Q̃′x′| ≤ ηε+Ch
3
2 ε+Cε2 in Q̃−1(X ∩ C4h)

with

Q̃ = diag(Q̃′, q̃n) := ((Id′+εP ′)−
1
2 , (1 + εpn)−

1
1+γ ) and q′ := εp′.

In turn, if ε, η ≤ h3/2,

|u(Q̃′x′, q̃nxn)− (τ ′ + q′) · Q̃′x′ − U(x)| ≤ Ch
3
2 ε in (Q̃−1X) ∩ C2h.
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Now notice that
2 + α+ β

1 + γ
pn = −2 + α+ β

1 + γ

trP ′

1 + β
= − trP ′.

And so,

q̃α+β
n (det Q̃)2 = (1 + εpn)−

2+α+β
1+γ (det(Id′+εP ′))−1

=
(
1− ε2+α+β

1+γ pn +O(ε2)
)(

1− ε trP ′ +O(ε2)
)

= 1 +O(ε2).

Thus, we can find a Q that satisfies (5.6) and is ε2 close to Q̃, i.e.,
|Q̃−Q| ≤ C̃ε2.

It follows that
|u(Q′x′, qnxn)− (τ ′ + q′) ·Q′x′ − U(x)| ≤ Ch

3
2 ε in (Q−1X) ∩ C2h,

since ε ≤ h3/2. Therefore, taking h > 0 sufficiently small (depending on
λ < 1), we find that∣∣∣∣1hu(QDhx)− 1

h
(τ ′ + q′) ·Q′D′hx′ − U(x)

∣∣∣∣ ≤ εhλ2 in ((QDh)−1X) ∩ C2,

as desired. �

With Lemma 5.2 in hand, we prove our proposition.

Proof of Proposition 5.1. First, we claim, by induction, that a sequence of
matrices Rk := diag(R′k, rk,n) and vectors τ ′k ∈ Rn−1 exit such that the
rescalings of u at height hk = hk0,

uk(x) := u(RkDkx)
hk

for x ∈ Xk := (RkDk)−1X

with
Dk := diag(h

1
2
k Id′, h

1
1+γ
k )

satisfy

(5.8) |uk − Uτ ′
k
| ≤ εk := εh

λ
2
k in Xk ∩ C2

provided
δ = cδ0 and ε = ε0

for some small c > 0. Moreover,
(5.9) rα+β

k,n (detRk)2 = 1 and |Rk −Rk−1| ≤ Cεk−1.

The base case k = 0 holds by assumption, with R0 = Id and τ ′0 = 0.
Now suppose the claim holds for some k ∈ N. Note that the second

inequality in (5.9) implies that
|Rk − Id | ≤ Cε.

From (5.1), provided that c > 0 is sufficiently small, we see that

0 ≤ xn ≤ |r−1
k,n||R

′
k|
λ+ 2

1+γ δεk|x′|λ+ 2
1+γ ≤ δ0εk on ∂Xk ∩ C2.
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Furthermore, since the segment between 0 and ε1/2k (τ ′k|τ ′k|−1 + δ0εken) lives
inside Xk ∩ C2 (by the above inequality on the height of ∂Xk ∩ C2 and the
convexity of X), the function wk = uk + τ ′k · x′ is convex, and the second
equality in (5.2), we deduce that

|τ ′k| ≤ 2ε
1
2
k + Cγ max{ε

γ
2
k , ε

1
2
k }

(cf., the beginning of Step 1.1 in the proof of Lemma 5.2). In particular, this
shows that τ ′k → 0 as k →∞. A similar argument, but also using that the
family of slopes τ ′k is uniformly bounded, yields the inclusion

∇uk(Xk ∩ C1) ⊂ Yk ∩ C∗1/ρ with Yk := (RkDk)th−1
k Y.

By construction, the boundary of Xk maps to the boundary of Yk. From
(5.1), we also see that

0 ≤ yn ≤ |rk,n||(R′k)−1|λ+ 2γ
1+γ δεk|y′|λ+ 2γ

1+γ ≤ δ0εk on ∂Yk ∩ C∗1/ρ.

In turn, in Xk ∩ C1, un ≥ 0 and, using (5.8),
1− δ0εk
1 + δ0εk

(xn − δ0εk)α+
(∂nuk)β

≤ detD2uk ≤
1 + δ0εk
1− δ0εk

xαn

(∂nuk − δ0εk)β+
,

taking c > 0 smaller if needed depending on ρ > 0. Therefore, by Lemma 5.2,

|ũk − Uτ̃ ′
k
| ≤ εkh

λ
2
0 = εk+1 in X̃k ∩ C2

where
ũk(x) := uk(QDh0x)

h0
and X̃k := (QDh0)−1Xk

for

Q = diag(Q′, qn) with |Q− Id |, |q′| ≤ C0εk and qα+β
n (detQ)2 = 1.

In other words, the inductive step holds taking

uk+1 = ũk, Rk+1 = RkQ, and τ ′k+1 = τ̃ ′k.

Indeed,

rα+β
k+1,n(detRk+1)2 = qα+β

n (detQ)2rα+β
k,n (detRk)2 = 1,

and
|Rk+1 −Rk| ≤ |Q− Id ||Rk| ≤ 2C0εk.

Second, we find R and conclude. By the inequality in (5.9), we see that
Rk converges to some R, as k tends to infinity. In particular,

|R−Rk| ≤ Cεk.

So, after replacing εk with Cεk, we can replace Rk by R in (5.8). In particular,
considering the inductive manner in which each τ ′k is produced, we have that

|u(Rx)− r′k ·R′x′ − U(x)| ≤ Cεh1+λ
2

k in (R−1X) ∩ Chk



32 Y. JHAVERI AND O. SAVIN

with

r′k :=
k∑
i=1

h
i−1

2 (R′i−1)−tq′i.

Here q′i is the linear part of the polynomial found at each application of
Lemma 5.2. Hence, r′k converges to some r′, and

|r′ − r′k| ≤ 2εh
1
2 +λ

2
k .

It follows that we can replace r′k with r′, as we replaced Rk with R: for all
k ∈ N,

|u(Rx)− r′ ·R′x′ − U(x)| ≤ Cεh1+λ
2

k for all x ∈ (R−1X) ∩ Chk .

Finally, we claim that (R′)tr′ = 0, which concludes the proof. Indeed, the
inequality above tells us that the function u(Rx)− r′ ·R′x′ − U(x) vanishes
up to and including first order at the origin. From (5.2), we know that
∇u(0) = 0 = ∇U(0), forcing (R′)tr′ = 0. �

6. Proof of Theorem 1.2

The proof of Theorem 1.2 has three steps. First, we prove a strict oblique-
ness estimate. This key estimate allows us to find an affine transformation
that aligns ν∂X(0) and ν∂Y (0), assuming ∇u(0) = 0. Second, after a rotation
which prescribes the now aligned normals at the origin, we blow-up to the
global flat setting of Section 4. Finally, we apply Proposition 5.1 to find a
pointwise expansion of u at 0. Since, in this procedure, the origin was fixed
arbitrarily, Theorem 1.2 follows.

6.1. Strict Obliqueness. In this section, we prove our strict obliqueness
estimate.

Lemma 6.1. Let X and Y be open, bounded, and C1 convex sets in R2.
Suppose that Tmin = ∇u is the optimal transport taking f = adα∂X to g =
bdβ∂Y , where a and b are functions bounded away from zero and infinity in X
and Y respectively, and max{α, β} > 0. Then

ν∂X(x) · ν∂Y (∇u(x)) ≥ θ > 0 for all x ∈ ∂X,
where θ depends only on the inner and outer diameters of X and Y , α, β,
and the upper and lower bounds of a and b.

The proof of this estimate follows the proof of the same estimate in
the work of Savin and Yu ([27, Section 3]). We show that orthogonality
(as opposed to strict obliqueness) is at odds with the volume estimate for
sections.

Proof. By an approximation argument, we may assume that a and b are C1

and that X and Y are C2 and uniformly convex (cf. [27]).
Let us assume, without loss of generality, that 0 ∈ ∂X, {x2 = 0} is tangent

to X (at 0), X ⊂ {x2 > 0}, u(0) = 0, and ∇u(0) = 0. Now suppose, to
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the contrary, that we have orthogonality instead of strict obliqueness; then
{y1 = 0} is tangent to Y (at 0 = ∇u(0)), and, without loss of generality,
Y ⊂ {y1 > 0}. Set

Ω := {x ∈ X : x2 < d0} ∩ ∇v({y ∈ Y : y2 > 0}).

(Recall v is the minimal convex extension outside of Y of the Legendre
transform of u.) Also, define

ψ := diam(Y )
d0

x2.

Notice that

(6.1) u2 ≤ ψ on ∂Ω ∩X.

Moreover, if u12 = u21 along ∂X, then

(6.2) u21 ≥ 0 along ∂X ∩ Ω.

Indeed, first, since Y ⊂ {y1 > 0} and Y is tangent of the positive y2-axis,
the image under ∇u moves to the left as we move along ∂X from the left
toward the origin; if ΓX determines ∂X near the origin,

u1(x1,ΓX(x1)) ≥ u1(z1,ΓX(z1)) if x1 < z1 ≤ 0.

As u1(z1,ΓX(x1)) ≥ u1(x1,ΓX(x1)), by the convexity of u, we deduce that

u1(z1,ΓX(x1)) ≥ u1(z1,ΓX(z1)).

Finally, since ΓX(x1) > ΓX(z1), it follows that

u21(z1,ΓX(z1)) = u12(z1,ΓX(z1)) ≥ 0,

letting x1 tend to z1. Suppose the maximum of u2 − ψ is achieved at some
z ∈ Ω. Then ∇u2(z) = ∇ψ(z). And setting

Lw := uij∂ijw,

we find that, at z,

0 ≥ L(u2 − ψ) = α
ν∂Xd · e2
d∂X

+ a2
a
− diam(Y )

d0

(
β
ν∂Yd(∇u) · e2
d∂Y (∇u) + b2(∇u)

b(∇u)

)
≥ αν∂Xd · e2

d∂X
− Ca −

diam(Y )
d0

(
β
ν∂Yd(∇u) · e2
d∂Y (∇u) + Cb

)
> 0.

Indeed, ν∂Xd · e2 > 0, if d0 � 1. Moreover, ν∂Yd(∇u) · e2 < 0, as ∇u(Ω) ⊂
{y2 > 0} and, also, provided that d0 � 1. Finally, if d0 � 1, then the terms
with d∂∗ in the denominator will be large enough to absorb the constants Ca
and Cb. (Recall max{α, β} > 0.) Here, for example,

∂Xd := {x ∈ X : d∂X(x) = d}
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and ν∂Xd is the unit normal to ∂Xd oriented to point inside {x ∈ X :
d∂X(x) > d}. (See, e.g., [16].) This is a contradiction. In turn, by (6.1) and
(6.2), the maximum of u2 − ψ is achieved on ∂Ω ∩X, which implies that

(6.3) u ≤ diam(Y )
d0

x2
2 in Ω.

Unfortunately, we cannot guarantee that u12 = u21 along ∂X. Therefore,
we consider the following approximation scheme: let ∇uk be the solution to
the optimal transport problem taking

fk := (1− k−1)f + k−1‖f‖L1(X) to gk := (1− k−1)g + k−1‖g‖L1(Y ).

By [27, Remark 2.1], ∇uk converges to ∇u locally uniformly in R2, and,
similarly, ∇vk converges to ∇v locally uniformly in R2. (Here vk is the
minimal convex potential associated to the optimal transport problem taking
gk to fk, and vk, in Y , agrees with the Legendre transform of uk.) Set

Ωk := {x ∈ X : x2 < d0} ∩ ∇vk({y ∈ Y : y2 > 0}).

Then Ωk converges to Ω in the Hausdorff sense. Since fk and gk are positive
and Hölder continuous, uk ∈ C2(X) by Caffarelli’s boundary regularity
theory ([5]). So uk21 = uk12 along ∂X. In turn, by the formal maximum
principle argument above,

uk ≤ diam(Y )
d0

x2
2 in Ωk.

Taking the limit, k →∞, proves (6.3).
In summary, if we have orthogonality rather than strict obliqueness,

(6.4) u ≤ Cx2
2 in Ω(u) and v ≤ Cy2

1 in Ω(v),

where the estimate on v is by duality.
To conclude, let ΓY determine ∂Y near the origin. Corollaries 3.13 and

3.8 and (6.4) applied in succession imply

Ch2 ≥ |Sh(u, 0)||∇u(Sh(u, 0))|
≥ c|Sh(u, 0)||Sh(v, 0)|

≥ c|{x ∈ X : x1 ≤ 0, x2 ≤ ch
1
2 }||{y ∈ Y : y2 ≤ 0, y1 ≤ ch

1
2 }|

≥ ch
1
2 Γ−1

X (ch
1
2 )h

1
2 Γ−1

Y (ch
1
2 ).

Dividing through by h2 yields

C ≥ Γ−1
X (ch

1
2 )

ch
1
2

Γ−1
Y (ch

1
2 )

ch
1
2

.

Since Γ′X(0) = Γ′Y (0) = 0, by assumption, (Γ−1
X )′(0) = (Γ−1

Y )′(0) = +∞. But
this implies that the right-hand side above tends to infinity when h tends to
zero, which is impossible. �
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6.2. Blow-ups. In this section, we blow-up. That said, in order to blow-up
to the flat setting studied in Section 4, we have to not only use Lemma 6.1
but choose the right transformation to normalize sections.

6.2.1. A First Normalization. Up to a translation and subtracting an affine
function, we assume that

0 ∈ ∂X ∩ ∂Y, u(0) = 0 = v(0), and ∇u(0) = 0 = ∇v(0).

From our strict obliqueness estimate, a shearing transformation exists that
aligns the inner unit normals of ∂X and ∂Y at the origin, which after a
rotation can be prescribed. In particular, a Θ exists such that

X̃ := Θ−1X ⊂ {xn > 0} and Ỹ := ΘtY ⊂ {yn > 0}

have {x2 = 0} and {y2 = 0} as tangent planes to their boundaries at 0
respectively. Moreover, det Θ = 1. Then defining

ũ(x) := u(Θx),

we find that
(∇ũ)#f̃ = g̃

where

f̃ = ãdα
∂X̃

with ã(x) := a(Θx)
[
d∂X(Θx)
d∂X̃(x)

]α
and

g̃ = b̃dβ
∂Ỹ

with b̃(y) := b(Θ−ty)
[
d∂Y (Θ−ty)
d∂Ỹ (y)

]β
.

By [22, Lemma 6.1], ã ∈ Cµ(X̃) and ã > 0. Similarly, b̃ ∈ Cω(Ỹ ) and b̃ > 0.

Remark 6.2. The restrictions on λ with respect to α and β explicitly, rather
than via γ, come from this normalization. Indeed, ã, for instance, as the
product of two Hölder continuous functions, will be Hölder continuous. Yet
between the two Hölder exponents it could inherit, it will inherit the smaller
one.

It will be convenient to suppress the tildes in these definitions, and write
u rather than ũ, for example.

6.2.2. A New Ellipsoid. In the proof of Lemma 4.2, we found ellipsoids
comparable to sections whose axes were parallel to the coordinate axes. The
same construction applies here. The only difference is that the δ in (4.14)
now depends on the doubling constants of f and g, dimension, and the
Lipschitz semi-norm of ∂X. For simplicity, we let wh = w1;h, as defined a
few lines above (4.14). It will be convenient to normalize these ellipsoids as
we blow-up.
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6.2.3. A Blow-up Limit. In this section, we show that the boundaries of
X and Y flatten as we normalize. Since X and Y are C1,1 and uniformly
convex, near the origin,
{x2 > p−1x2

1} ⊂ X ⊂ {x2 > px2
1} and {y2 > q−1y2

1} ⊂ Y ⊂ {y2 > qy2
1}

for two constants p, q > 0.

Lemma 6.3. For each k ∈ N, there is an hk > 0 such that dhk > kw2
hk
.

Proof. Suppose the lemma fails to hold; that is, a k̃ ∈ N exists for which
dh ≤ k̃w2

h for all h ≤ h̃.
Let

Ah := diag(wh, dh), Xh := A−1
h X, and Yh := h−1AthY,

and consider the normalized potentials

uh(x) := u(Ahx)
h

and vh(x) := v(A−th hy)
h

along with their normalized densities
fh(x) := (detAh)f(Ahx) and gh(y) := h2(detA−th )g(A−th hy).

Now observe that
{x2 > d−1

h w2
hp
−1x2

1} ⊂ Xh ⊂ {x2 > d−1
h w2

hpx
2
1}

and
{y2 > hdhw

−2
h q−1y2

1} ⊂ Yh ⊂ {y2 > hdhw
−2
h qy2

1}.
By convexity,

dh ≥ cpw2
h.

Thus, taking k̃ larger if needed,
1
k̃
≤ cp ≤ dh

w2
h

≤ k̃.

Hence, up to a subsequence, as h→ 0, we find two limiting domains X̃ and
Ỹ such that

{x2 > k̃p−1x2
1} ⊂ X̃ = {x2 > p̃(x1)} ⊂ {x2 > pk̃−1x2

1},
for some convex p̃ that vanishes only at 0, and

Ỹ = {y2 > 0}.
Moreover, recalling our balancing condition ((4.15)),

1
C
≤ mh := d2+α+β

h w2
h

h2+β ≤ C,

we find a convex function ũ, smooth in X̃, and such that

detD2ũ(x) = m̃
a(0)(x2 − p̃(x1))α

b(0)ũβ2
in {x2 > p̃(x1)}
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and
ũ2 = 0 along {x2 = p̃(x1)}.

Up to multiplying ũ by a constant, we may assume that m̃a(0)/b(0) = 1.
(The constant m̃ = limh→0mh.)

Set
Lw := ũij∂ijw.

First, notice that there is a C > 0 such that
Cxγ2 ≥ ũ2 on ∂S1(ũ, 0).

If s := supS1(ũ,0)(ũ2−Cxγ2) is achieved at x̃ ∈ S1(ũ, 0), then ũ2(x̃) = Cx̃γ2 +s
for some s ≥ 0, and

0 ≥ L(ũ2 − Cxγ2)(x̃)

= α
1

x̃2 − p̃(x̃1) − β
Cγx̃γ−1

2
Cx̃γ2 + s

− C−1γ−1x̃1−γ
2 Cγ(γ − 1)x̃γ−2

2

≥ α 1
x̃2 − p̃(x̃1) − (βγ + γ − 1) 1

x̃2
> 0,

provided α > 0, an impossibility. (Because ũ2 and Cxγ2 + s touch at x̃,
their gradients agree at x̃. Since ũij is the inverse of ũij , we have that
ũ12ũ

12 + ũ22ũ22 = 1. Moreover, ũ12(x̃) = (Cxγ2 + s)1(x̃) = 0. In turn,
ũ22(x̃)ũ22(x̃) = 1, which explains the second equality line.) So we find that

ũ ≤ Cx1+γ
2 in S1(ũ, 0).

If α = 0, then consider the power γ − ε rather than γ, with ε > 0 arbitrary
but small. In particular, Cxγ−ε2 , for some C > 0 independent of ε, is an
upper barrier; the right-hand side, in this case, becomes ε(1 + β)x̃−1

2 > 0.
Applying the maximum principle and then sending ε to zero, yields the same
inequality. Thus,

dt(ũ, 0) ≥ ct
1

1+γ .

Since uh converges to ũ locally uniformly,

dt(uh, 0) ≥ c

2 t
1

1+γ for all h� 1.

Moreover,

dt(uh, 0) = dth(u)
dh(u) and wt(uh, 0) = wth(u)

wh(u) .

So our balancing condition holds for uh as well after replacing C by C2. In
turn,

wt(uh, 0)2 ≤ Ct.
Then

c
t

1
1+γ

t
≤ dt(uh, 0)
wt(uh, 0)2 = dth

dh

w2
h

w2
th

≤ k̃2.

But taking t� 1, we find this inequality impossible. �
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Swapping the roles of u and v and α and β (also p and q), we find a dual
lemma.
Lemma 6.4. For each k ∈ N, there is an hk > 0 such that khkdhk < w2

hk
.

A consequence of Lemmas 6.3 and 6.4 is that the boundaries of X and
Y flatten under A−1

h and hAth respectively; up to a subsequence, in the
Hausdorff sense,

Xh → {x2 > 0} and Yh → {y2 > 0},
as h → 0. In turn, up to multiplication by a constant and the same
subsequence, locally uniformly in R2,

uh → ū = P̄ (x1) + p̄
γ

β
1+β

(1 + γ)γ x
1+γ
2 ,

by Theorem 1.4. Furthermore,

|∇ū| ≤ 1
r
in S1(ū, 0),

where r > 0 is the constant from Corollary 3.5.

6.3. Conclusion. Up to a multiplication by a constant and determinant 1
transformation in the x′ variables (both depending on the constant r > 0
from Corollary 3.5, i.e., only on the doubling constants of f and g), we find
that, after choosing h > 0 sufficiently small, the rescaling

ũ := uh

satisfies the hypothesis of Proposition 5.1. First, notice that
ũ(0) = 0 = |∇ũ(0)|,

which is (5.2), since u(0) = 0 = |∇u(0)|. Second, for any ε > 0,
|ũ− U | ≤ ε in C2,

by the conclusion of the previous section. (The constant and determinant 1
transformation turn ū into U .) By convexity,

∇ũ(X̃ ∩ C1) ⊂ Ỹ ∩ C∗1/ρ.

And, by construction, ∇ũ maps ∂X̃ to ∂Ỹ . Also,

{x2 > d−1
h w2

ht
γ

1+γ p−1x2
1} ⊂ X̃ ⊂ {x2 > 0}

and
{y2 > hdhw

−2
h t

1
1+γ q−1y2

1} ⊂ Ỹ ⊂ {y2 > 0}.
So (5.1) follows by Lemmas 6.3 and 6.4 as well as the definition of λ. These
estimates on ∂X̃ and ∂Ỹ together with the estimates

|ã(x)− 1| ≤ δε|x|µ and |b̃(y)− 1| ≤ δε|y|ω

imply that the inequalities on detD2ũ hold. Thus, applying Proposition 5.1
proves that u is C2+λ at 0 when γ ≥ 1 and C1+γ(1+ω) at 0 when γ < 1.

Since Θ and r > 0 are uniform over points in ∂X, Theorem 1.2 is proved.
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