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ABSTRACT. We study the most common image and informal description
of the optimal transport problem for quadratic cost, also known as the
second boundary value problem for the Monge—Ampeére equation—What
is the most efficient way to fill a hole with a given pile of sand?—by
proving regularity results for optimal transports between degenerate
densities. In particular, our work contains an analysis of the setting
in which holes and sandpiles are represented by absolutely continuous
measures concentrated on bounded convex domains whose densities
behave like nonnegative powers of the distance functions to the boundaries
of these domains.

1. INTRODUCTION

The optimal transport problem, formulated by Gaspard Monge in 1781,
asks whether or not it is possible to find a map minimizing the total cost of
moving a distribution of mass f to another g given that the cost of moving
from x to y is measured by ¢ = ¢(x,y). Since its inception, optimal trans-
portation has drawn together and impacted many areas of mathematics: fluid
mechanics, functional analysis, geometry, general relativity, and probability,
just to name a few (see, e.g., [1, 15, 23, 25, 30]). The most fundamental case
is that of the quadratic cost on R”, when c(z,y) = |z —y|? for 2,y € R". Tt is
the model for all sufficiently smooth cost functions on all sufficiently smooth
(Riemannian) geometries ([10]), and it is at the core of many applications
([30]). Precisely, it is

win{ [ o= T@Pas@): Tesf = .

T

Under certain conditions on the nonnegative measures f and g, Brenier
discovered that the optimal transport problem for the quadratic cost on
R™ is uniquely solvable f-almost everywhere ([2]; see also [24]). Moreover,
he characterized minimizing maps as gradient maps of convex potentials:
Timin = Vu for some convex function u : R® — R. When f and g are
absolutely continuous with respect to Lebesgue measure, he also established
that any convex potential u defining T,,;, satisfies a Monge-Ampere equation,

g(Vu) det D*>u = f and Vu(spt f) = spt g,
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in a suitable weak sense (the Brenier sense; see Lemma 3.1), where f = fdz
and g = gdy. (In this work, we equate absolutely continuous measures
with their densities. It will either be clear from the context or explicitly
stated when absolute continuity is assumed.) In turn, Brenier linked the
optimal transport problem and the second boundary value problem for the
Monge-Ampere equation: given two convex domains and a nonnegative
function on their product, find a convex function whose gradient maps one
domain onto the other with Jacobian determinant proportional to the given
function.

Unfortunately, optimal transports can behave rather poorly. Indeed,
Calffarelli observed that T},;, = Vu can be discontinuous under the seemingly
ideal conditions that f and g are the characteristic functions of smooth,
bounded domains of equal volume ([3]; see also [20]). In principle then,
a convex potential of an optimal transport (on the support of the source
measure) even between “nice” measures is no better than an arbitrary convex
function. That said, in this same work, Caffarelli showed that the optimal
transport must be locally Holder continuous in X := int(spt(f)) under a
geometric condition —Y := int(spt(g)) is convex —and a uniform ellipticity
type condition —the Monge—-Ampeére measure associated to u is doubling
in spt(f). In subsequent works, Caffarelli established the global Holder
continuity of Vu assuming that both X and Y are convex ([4]), and the
global Holder continuity of D?u, the Hessian of u, additionally assuming X
and Y are C? and uniformly convex and f and g are positive and Hoélder
continuous in X and Y respectively ([5]).

In this nondegenerate setting, Urbas also proved that D?u is Holder
continuous up to X when X and Y are uniformly convex, but under a
C3 regularity assumption on X and Y ([28]). More recently, Chen, Liu,
and Wang demonstrated that these domain regularity assumptions can be
weakened to C1! in n > 3 dimensions and C1® in two dimensions ([7, 8]). In
two dimensions and at the same time as Caffarelli, Delanoé established the
existence of globally smooth solutions to the second boundary value problem
for the Monge-Ampere equation given smooth data ([9]).

In the degenerate setting of arbitrary open, bounded source and target
domains, but still considering densities bounded away from zero and infinity,
Figalli ([12]), Figalli-Kim ([14]), Goldman—-Otto ([18]), and Goldman ([17])
showed that the closure of the discontinuity set of an optimal transport, also
known as the singular set, has zero measure in X.

In this paper, we consider a different degenerate setting, one in which f
and g are permitted to vanish at times, e.g., continuously at the boundaries
of X and Y. This scenario encompasses a study of the most common image
and informal description of the optimal transport problem:

What is the most efficient way to fill a hole with a given pile of sand?

Our first result is a global Holder continuity regularity result for optimal
transports between absolutely continuous, doubling measures (see Section 2
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for the definition of a doubling measure in this context). This doubling
assumption is different from Caffarelli’s doubling assumption in that it is
only on the data of the problem rather than on the data and the solution, as
it is in Caffarelli’s case.

Theorem 1.1. Let X andY be open, bounded convex sets in R™, and suppose
that f and g are densities which define doubling measures concentrated on X
and Y respectively. Let T,,;, be the optimal transport taking f to g. Then
Trnin € C?(X), for some o € (0,1), depending on n, the doubling constants
of f and g, and the inner and outer diameters of X and Y.

Our second result establishes (optimal) global regularity for the optimal
transport in the plane when f and g are comparable to nonnegative powers of
the distance functions to the boundaries of their supports, which we assume
are convex:

f ~ dgx for some o > 0 and g ~ dgy for some 5 > 0.

In this work, dy. represents the distance function to the boundary of x;
dg« > 0 in * and dy, = 0 outside of . Thus, we assume our sandpile and
hole (turned upside down) have precise shapes at their boundaries.

Here we show that the optimal transport effectively splits along the
tangential and normal directions to 0X. Let v : [0,1] — [0, 1] be the optimal
transport taking a density which behaves like % near 0 to another density
which behaves like y® near 0. Then, by the mass balance formula,

1+«
1+

In other words, informally, we find that 7,,;, behaves like the identity map
t moving along the boundary of X and the one dimensional transport t”
moving orthogonally in from the boundary of X.

In order to precisely state our theorem and expansion, we must define
three Holder exponents, A, u, and w, to formalize what we mean by ~ above.
We state our theorem assuming that o > 0 and 8 > 0, and make a remark
after to address the mild difference when either a = 0 or 8§ = 0. There are
two cases to consider. When a > (3, let

u'(t) ~ 7 with v :=

1 2 2
= A ;7 and w := A, for any fixed 0 < A < min {a, ,B}.

If « =3, ie., v =1, we additionally assume that A < 1. On the other hand,
when a < (3, set

1
pi=Xand w:= A%, for any fixed 0 < A < min {a, —
v

Theorem 1.2. Let X and Y be open, bounded, and C“' uniformly convex
sets in R2. Suppose o and 3 are two positive constants. Let a € C*(X)

and b € C¥(Y) be two positive functions. Suppose that Ty, is the optimal
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transport taking f = adyy to g = bdgy. If vy > 1, then Tpyin € CAX). On
the other hand, if v < 1, then Ty, € CY1H)(X).

At the heart of Theorem 1.2 is an expansion of a convex potential defining
Trmin at points on 9X. In particular, up to a translation placing 0 € X and
subtracting off the tangent plane to u at 0, we prove that

(M) — pra? — poxs ™| < C(jar [+ 2377)2 in {wy > 0} 0 M'X,

where M is some linear transformation and p1, p2, and C are three positive
constants.

Remark 1.3. The case a = 0 = (8 is, by now, well-understood. When o =0
(respectively 8 = 0), the upper bound on A becomes independent of any
dependence on « (respectively f3).

Our final main result is a Liouville theorem in the flat setting, when
X ={x, >0} and Y = {y,, > 0}, with a =1 = b. Here u,, > 0 in {z, > 0},
and our Monge—Ampeére equation is

«

(1.1) det Dy = x—g in {z, > 0} and u,, = 0 on {z,, = 0}.
Un

We remark that this equation is invariant under affine transformations that
keep the tangential variables 2’ = (z1,...,x,_1) separate from the normal
variable z,,: Az = (A’2’, apxy,). Furthermore, since all three notions of weak
solution to the Monge-Ampeére equation (Alexandrov, Brenier, and viscosity)
are equivalent in this case, the following theorem classifies not only Brenier
solutions to (1.1), but also Alexandrov and viscosity solutions to (1.1).

Theorem 1.4. Let u be conver and such that (Vu)#dg{mn>0} = dg{yn>0}’
for two given constants o > 0 and 8 > 0. Then

u(x) =po+p -2’ + P22 —i—pn:l;qlf”

for some pg € R, p' € R*™ L, positive definite matriz P', and constant p, > 0.

This paper is organized as follows. The next section collects some facts
from measure theory and convex analysis. In Section 3, we revisit Caffarelli’s
boundary regularity theory, and prove Theorem 1.1. In Section 4, we study
the flat setting, and we prove our (Liouville) Theorem 1.4. In Section 5, we
establish a pointwise “flat implies smooth” result. Finally, in Section 6, we
prove Theorem 1.2.

2. PRELIMINARIES

Throughout this work, ¢ and C will denote positive constants that may
change from line to line. It will be clear from the context, if any change
occurs. Sometimes some of the quantities on which ¢ and C' depend will be
explicit and denoted in parentheses or as subscripts; other times, especially
when these quantities are contextually clear, these quantities will be implicit.

Let us start with a pair of definitions and an important lemma by John.
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Definition 2.1. We say that a map T pushes-forward a measure f to another
measure g, Ty f = g, if

/(p oTdf = /gpdg for all ¢ Borel and bounded.

Definition 2.2. A nonnegative measure f is doubling (on bounded convex
domains) if there is a constant C' > 1 such that the following holds: given
an open, bounded convex set S whose barycenter is contained in spt f,

f(S) < Cf(59),
where %S is the dilation of S with respect to its center of mass by 1/2.

Definition 2.3. An ellipsoid is the image under a symmetric positive definite
affine transformation of B;(0). In particular, let £ be any symmetric positive
definite matrix and z € R", the ellipsoid generated by E and centered at
x e R”is
Epy i=1x+ E(B1(0)).
Given r > 0, we let
r€ =r€p, =&

be the dilation of € with respect to its center by r. (Given an ellipsoid &, we
can assume its generating matrix E can be diagonalized with a determinant
1 orthogonal matrix.)

Lemma 2.4 (John’s Lemma). Let S C R™ be a bounded convex set with
nonempty interior and center of mass z. A unique ellipsoid & also with
center of mass z exists such that

SCSCn%E.

With these definitions and John’s lemma in hand (see, e.g., [19] for a
proof), we prove that a measure that is doubling on ellipsoids is doubling.

Corollary 2.5. Let f be a nonnegative measure. If f is doubling on ellipsoids,
then f is doubling.

Proof. Let S be an open, bounded convex set. Then, by John’s lemma, S is
comparable to an ellipsoid &: & C S € n3/2€, and the center of mass of € is
the same as the center of mass of S. If C' > 1 is the doubling constant for f
on ellipsoids and k > 1 is chosen such that n%/2/2% < 1/2, then

F(S) < f(n28) < Cf(hn3e) < - < CFf(knze) < CFf(Le) < CFf(LS).
([l

As a consequence of Lemma 2.5, we can show that measures that are
comparable to the distance function to the boundary of a convex domain are
doubling.
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Lemma 2.6. Let X C R™ be an open, bounded convexr set. The density
f = adfy defines a doubling measure on ellipsoids if 0 < infy a,supx a < oo.
In particular, a constant C' > 1 exists for which

AfSCﬁJ

given any ellipsoid & centered in X.

Proof. There are two cases to consider.

Case 1: € C X. Let d:= dyx(z), with z taken to be the center of £. Up
to a translation and rotation, €&, X C {z, > 0}, and the origin is the closet
point on X to z.

First, note dyx(x) < 2d for all x € 9€, and so, for all x € €. Indeed, if
Tn < zn, then there is nothing to show. If z, > z,, then

dox (z) < dofz,>01(T) = Tn = (Tn — 20) + 20 = (20 — T7,) + 20 < 22,

since x},, x, > 0. Here 2* € O€ is the dual point to z. So

[ £ <2 Ewade.
&

Second, for ¢ = 1,...,n, let r; and e; be the principle radii and directions
of &. Hence, A :=conv{z+tre;:i=1,...,n} C & Also, |A|/|E] > ¢(n).
Now consider Ay := conv{z + max{r;,d}e; : i =1,...,n}, which contains A

and is contained in X. For all x € %Ad then, distpa,(z) > d/Z%. In turn,

d
dox () > don,(z) > — for all z € SA.
23
It follows that

gn+5 gn+
o < ——— (inf A < f .
d |8|_c(n)infa(m a) 3Oé| |_ mfa/ f <C(n,a,in a)/ng

Finally, the above two inequalities together yield

/fgC’(n,oz,infa,supa)/ I
e ie

Case 2: £\ X is nonempty. Up to a translation, we can assume that the
center of € is the origin. Let z be the center of mass of (3€)NX, d := dyx(2),
and suppose that the nearest point to z on dX lives on the plane {z-e =0}
for some |e| = 1.

Using that open, bounded convex sets are balanced with respect to their
center of mass, dy(,.e~0) i 1-homogeneous, and arguing like we did to
produce the first inequality above, we see that

dox(x) < C(n)d for all x € EN X.
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Now let g be the John ellipsoid of (1€) N X, which also has center z.
Notice that § C X. So

/fnga|5mX|gc&z”;@a)mx;g&ﬂg;gc[ fgC[ f
¢ 13 le

Here we have used the arguments of Case 1 on J and that ENX C 2[(3&)NX],
which uses that 0 € X. O

Remark 2.7. By Corollary 2.5, if 0 < infx a,supy a < oo, then f = adjy
defines a doubling measure.

We conclude this section with three lemmas. These lemmas use nothing
about the optimal transport problem; they are facts about convex functions
with centered sections. The first lemma’s proof may be found in [4].

Lemma 2.8 (Centered Sections). Let u : R" — R be a convex function

whose graph contains no complete lines. Then, for every h > 0 and z € R",

there exists an affine function ¢ such that €(z) = u(z) + h and the set
Si(z) ={x eR" :u < {}

is centered at z.

Lemma 2.9. Let Sj(z) be a centered section for v at z € R". Let z1 and
zy be two opposite points on 0Sf,(z), i.e., zo = z + (2 — z1) for some 1 > 0.
Then

Njw

n_%glgn .

Proof. Without loss of generality, we may assume that z = 0 and that z;
and z lie on the ej-axis. So, by John’s lemma, & C S} (0) C n3/2¢, for some
ellipsoid &, whose center of mass is also the origin. Let e > 0 denote the
e1-component of €N {positive ej-axis}. Abusing notation, we let z; > 0 and
—lz1 denote the ej-component of z; and z2. In turn, e < z1,1l2z; < n3/26,
from which it follows that n—3/2 <[ < n3/ 2 as desired. O

Lemma 2.10. Let Sj(z) be a centered section for u at z € R™. Then

h < max(¢ —u) < (1+n3)h.
Si(2)
Proof. Without loss of generality, z = 0.

Since (¢ — u)(0) = h, by definition, the first inequality is trivial.

Now let 2, € S};(0) be a point at which £ — u achieves its maximum value;
let z; and z» be the opposite points on 9,57, (0) for which the segment [z, 2]
contains 0 and x; and let ¢ > 0 be the one-dimensional concave function
defined by £ —u on [z1, 22]. Notice that the lines ¢; C R? determined by (z;,0)
and (0, h), for i = 1,2, are secant lines for graph of 1. Hence, the graph of
1 must live under the union of the subgraphs of these two lines. Assume
that z, € [0,22]. Otherwise, swap the roles of z; and z in what follows.
Consider the triangle (in R?) over [21, 0] with height h determined by the
points (z1,0), (0,0), and (0, ). Its maximal self-similar enlargement over
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[21, 22|, whose base has right end point (z2,0) instead of (0,0), has height
Ch with 1+n73/2 < C <1+ n3? (see Lemma 2.9), from which the second
inequality follows. O

3. BOUNDARY REGULARITY OF MAPS WITH CONVEX POTENTIALS
REVISITED

In this section, we prove Theorem 1.1, and list some geometric properties of
convex potentials defining optimal transports between absolutely continuous
doubling measures on convex domains. Let ug : R — R be a convex
potential defining the optimal transport of Theorem 1.1. It will be convenient
to replace ug with its minimal convex extension outside of X. More precisely,
we consider the function

u(x) == sup  {uop(z) +p-(xr—2)}.
z€X,pEdug(2)

Similarly, we let vy be the Legendre transform of ug, and
v := the minimal convex extension outside Y of vg.

Thus, Vv is the optimal transport taking g to f.
Given a centered section S = S} (z) for u, which exists at every z € R"
([4]), we define the normalized pair (@, S) by
N (A 1)
u(x) == .
where A(€) = B1(0) and € is the John ellipsoid of S. Moreover, we let f and
g be the appropriate rescalings of f and g which ensure that (Va)xf = g.
Similarly, we define X := A(X) and Y := h~'VA~(Y). Here and in the
remainder of this work, we let

L= (LY,

and S := A(S)

i.e., the transpose of the inverse of L, for any invertible transformation.
We first recall that optimal transports balance mass ([2, 29]).

Lemma 3.1. Let u : R" — R be convex and such that (Vu)yf = g, where
f and g are two absolutely continuous measures. Then, for all Borel sets

B ¢ Rn7
/ /

Next we prove an Alexandrov maximum principle for normalized pairs.

Lemma 3.2. There is an increasing function ¥ : [0,00) — [0, 00), depend-
ing only on dimension and the doubling constants of f and g, such that

limg_,0¥(d) =0 and
u(z)| < 9(dyg(x)) for x € S.

Here S is any normalized centered section based at any point in X .
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Proof. For notational simplicity, we suppress the dependence on z and set
d = dyg(2) and [a] = [a(z)].
First, observe that
8&(%5) C Bgr(0).
Also, considering the cone generated by (z,(z)) and S,
9(S) D K := conv(B,(0) U He)

for some unit vector e = e(z) and two positive constants R and r depending
only on dimension. Since the slope of the plane which determines S} is in Y,
0 € Y. By assumption, the center of S is in the closure of X. In turn,

/gs/ ngfg(}/ sz/ i<c| &
K di(9) S 18 ou(35) BRr(0)

(Normalization affects neither the doubling property nor the doubling con-
stants.)

Now let B,,, (tme) C conv(B,(0) U e) for m = 1,..., M be a sequence of
balls chosen so that

K C Ky \ Kopo1 with Ky, := conv(B,,, (tme) U B,(0)) and Ko := B,(0).
By construction, {%Km}%:1 is a disjoint family, and
M = M(d) = oo as d — 0.
Hence, if we consider the collection
{Bja(tmlile)} iy C K C Y,

and redefine Ky, := conv(B,, |g|(tm|i]e) U B,5(0)), we see that the redefined
family {1K,,}M_, is also disjoint. So

M M
ufge> [ gcex [ gscfs

m=1
Combing the two chains of inequalities above, we find that

M / g<c | g<cb / J
B 5(0) BRr(0) B.4/(0)

|l

where .
loe |
k= [ °8 R’IUW .
log 5
In turn, M < C*. Solving for |@| concludes the proof. O

With Lemma 3.2 in hand, Theorem 1.1 follows from Caffarelli’s arguments
([4, 5]). Indeed, we first find that centered sections based at points in X have
an engulfing property. To prove this property, we replace Caffarelli’s modu-
lus for normalized solutions Cd™, i.e, the classical Alexandrov maximum
principle modulus, with the modulus ¥(d) from Lemma 3.2 in his proof.
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Lemma 3.3. For any pair of constants 0 <t <t < 1, there exists a constant
0 <ty <1 such that

ton(2) C £55()

for all x € X and all z € tS5(x) N X. The constant ty depends on t, t,
dimension, and the doubling constants of f and g.

Second, we obtain that u is strictly convex in X (cf., [5, Corollary 2.3]).
And, by duality and iteration, Theorem 1.1.

Corollary 3.4. A constant ¢ > 0, depending only on dimension and the
doubling constants of f and g, exists for which

u(z) > u(x) +p-(z—x)+ch
for allz € X, p € Ou(x), and all z € 8S;(z) N X.

Proof of Theorem 1.1. Let y,z € Y, and let h > 0 be such that z € 95 (v, y).
By Corollary 3.4, for any ¢ € dv(y),
v(z) >v(y)+q-(z—y)+ch.

By compactness, S{(v,y) C By (y) for some 7 € (0,1) depending only on
the inner and outer diameters of X and Y. (See [4].)
Applying Lemma 3.3 iteratively, we see that

Stcé(v,y) C %Sf(v,y) for all j € N for some ty € (0,1).
Let k € N such that tlgﬂ <h< t’{j. Then
z € S%(v,y) and |y — z| < %
In turn, for M > logty/log(1/2), we deduce that
v(z) 2 v(y) +q- (2 —y) + ctorly — 2.
Therefore, as v|3- agrees with the Legendre transform of u in Y, u € C'17(X)

for some o € (0,1), as desired. O

Following the proof of [5, Corollary 2.2], we find a first volume product
estimate.

Corollary 3.5. Let z € X and Si(z) be a centered section for u based at
x. There is a constant r > 0, depending on dimension and the doubling
constants of f and g, such that

B,(0) C Va(S) C By (0).
Consequently,

h'fl

-

" < S ()| Vu(Sy(2))] <
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Remark 3.6. An implication of Corollary 3.5 is that
9(d) = Cdn,
for some C' > 0 depending only on dimension and the doubling constants of f

and g, is a candidate modulus for Lemma 3.2. Indeed, since " < |Va(S)| <
r~ "™, this follows from Alexandrov’s maximum principle.

From Corollary 3.4, we also deduce that centered sections and classical
sections

Sp(u,z,p) i={2€ X :u(z) <u(x)+p-(z—x)+ h},
where p € Ju(z), are comparable (see [7] for a proof). When u is differen-

tiable at x, the set Ju(z) is a singleton, and we write Sp(u, z) rather than
Sh(u, z, Vu(z)). We often also suppress the dependence on wu.

Corollary 3.7. There are constants ¢ > 0, depending only on dimension,
and C > 1, depending only on dimension and the doubling constants of f
and g, such that

()N X C Sp(x) C S&p(z)NX
forallz € X.

In addition, we find that the image of (centered) sections of u of height h
are comparable to (centered) sections of v height h.

Corollary 3.8. There are constants ¢ > 0 and C' > 1, depending only on
dimension and the doubling constants of f and g, such that

Sen(v, Vu(x)) C Vu(Sp(u,x)) C Sep(v, Vu(z))

and
S5, (v, Vu(z))NY C Vu(S(u,z)) C S&, (v, Vu(z)) NY
for any x € X.

Proof. Up to a translation, we assume that x = 0. Furthermore, up to
subtracting off the tangent plane to u at 0, we assume that «(0) = 0 and
u > 0.

We start with the second inclusion. Since v in Y agrees with the Legendre
transform of u and Vu(X) =Y, Vu(Vu(z)) = z for all x € X. In particular,
Vu(Vu(0)) = 0. Moreover, v(0) = 0 and v > 0. Considering Corollary 3.7
then, it suffices to show that v(Vu(z)) < Ch for all € S§(u,0) N X, which
follows from Corollary 3.5. Indeed, letting A be the John transformation
that normalizes Sj,(u,0), observe that

v(Vu(z)) = Vu(z) - ¢ — u(x) = hVa(Azx) - Az — u(z) + £(z) < Ch,
as desired. (Recall Lemma 2.10.)

The first inclusion now follows from symmetry and duality. Specifically,
reversing the roles of u and v in the second inclusion and applying Vu, we
see that

Sh(v,0) = Vu(Vo(Sy(v,0))) C Vu(Scn(u,0)).
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Replacing h by C~'h concludes the proof. ([

Finally, again following the arguments of [5, Section 3], we obtain a
uniform density estimate on centered sections as well as a second volume
product estimate, this time on (centered) sections and their images when
X is polynomially convex. For completeness, let us recall the definition of
polynomially convex and an important remark, both taken directly from [5],
which will be used in the proof of Theorem 1.2.

Definition 3.9. A domain X is polynomially convex at the origin provided
0€ 90X ={x, =Tx(2")} (up to a rotation) and two constants 0 < k1, kg < 1
exist such that

x/ . Z/
‘ 21’2
whenever [2'],]2/| < 0 and 2’ lies in the truncated cone

{!fr’! < m]?|

|sin Z(2/, 2")| < kKa.

Ix(z') < Tx(2)

Here Z(2,2') denotes the angle between 2’ and 2’. A domain is polynomially
convex if it is polynomially convex at every point on its boundary.

Remark 3.10. In two dimensions, every convex domain is polynomially
convex. In every dimension, given a polynomially convex domain, the
constants k1 and ko can be chosen uniformly for all points on its boundary
depending only on the inner and outer diameters of the domain. (See [5,
Section 3, Remark 2 and Lemma 3.1].)

Proposition 3.11. Let X be polynomially convex. Then there are constants
C > 1 and ¢ > 0, depending on the inner and outer diameters of X and Y,
dimension, and the doubling constants of f and g, such that
olS@) N X|n _ diam(S§(x) 0 X)
2 . >c
1S ()| = diam(S}(2))

for any x € 0X.

For the convenience of the reader, we sketch the proof of this proposition.
But first we make a remark.

Remark 3.12. The polynomial convexity of X only plays a role in proving
the first inequality, between normalized volume and normalized diameter,
but for ellipsoids centered at points in X rather than centered sections.
This inequality is one about convex sets, and nothing more. In terms of the
geometry of X and Y, the remainder of the proof uses only that X and Y
are convex, and have boundaries that can be locally written as graphs of a
Lipschitz functions.

We write A~ B if cB< A< (CB for some ¢ >0 and C > 0.
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Sketch of Proof. Let 0 € 0X and consider S = S (0). The first inequality is
a consequence of [5, Lemma 3.2] and the comparability of S to an ellipsoid €
centered at 0; and so, it suffices to show that the normalized diameter of S,
5 diam(S N X)

" diam(S)
cannot be too small.

From Corollary 3.5, if r; is the principle radius of € in the e; direction,
then Vu(S) is comparable to an ellipsoid £* that has principle radius h/7;
in the direction e;. Let y = V£ € Y, where £ defines S. Up to a rotation, we
assume that r; > r; for all i # 1. Let x4 € 95 be such that vgg(z4) = e and
vps(x—) = —ey. In particular, V({—u) at x4 is parallel to e;. Since |z4| ~ 71,
x4 ¢ X if 6 > 0 is sufficiently small. Hence, y+ = Vu(zs) =y ttire; € 9Y
with t4 ~ h/T’l.

Now 0Y is locally the graph of a Lipschitz function in the direction v.
Let t; > 0 be the largest constant for which y; := y — t;v € Vu(S). Thus,
y1 € 9Y, as Vu(S) C Y. Since y1 € Y and 9Y is Lipschitz function in
the direction v, we find the inequality ¢t < Ch/ry. Let to > 0 be such that
y2 :=y +tov € Y NO(Vu(S)). By Corollary 3.5, it follows that to < Ch/ry.
Thus, if 29 = (Vu)~1(y2), then 22 € S N X. Moreover, by convexity and
Lemma 2.10,

zally = ya| = [22|[V (€ = w)(22)| = (€ = u)(0) = h.
In turn, |z2| > 71 /C. But this contradicts § > 0 being arbitrarily small. I

Corollary 3.13. Let X be polynomially conver. Then constants C' > 1
and ¢ > 0 exist, depending on the inner and outer diameters of X and Y,
dimension, and the doubling constants of f and g, for which

ch™ < 185(z) N X|[Vu(S; ()| ~ [Sh(@)|[Vu(Sh(z))| < Ch"
for any x € 0X.

4. THE FLAT CASE
Let u be convex and such that

(4.1) (Va)4d30, 50 = dopy, 0

for two nonnegative constants o and 8. Then, by the arguments of Section 3
and classical regularity theory for the Monge-Ampeére equation, we find
that u is strictly convex in {z, > 0}, u € Cllog({afn > 0}) NCR2({zy, > 0}),
u, > 0, and solves

o
(4.2) det D*u = x—g in {z, >0} and u,, =0 on {z,, = 0}.
Un

From this point forward, in this section, we assume that max{«, 5} > 0. If
a = =0, then u must be a quadratic polynomial by the classical Liouville
theorem for the Monge-Ampere equation; indeed, its even reflection over the
set {x, = 0} solves det D?u = 1 in R".
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First, we prove a Pogorelov estimate in ', which holds up to {z;,, = 0}.

Proposition 4.1. Let u be conver and satisfy u, > 0 in {x, > 0} and
(4.2). Let xg € {x,, = 0} and {, be the tangent plane to u at xo. For any
tangential direction e, i.e., such that e -e, =0,

(4.3) uee|u - fxo — h‘ < C(n + ﬁ, ||8eu - &JIO ||Loo(sh(x0))).

Proof. Up to a translation and subtracting off the tangent plane to u at xq, we
assume that zop = 0 and u(0) = Vu(0) = 0. Now let € > 0, T := Bn{y, > 0},
for some large ball B centered at the origin, and Q be a dilation of (Vu)~1(T)

such that
/(a:n +e€)% = / (Yn +6)5.
Q T

Furthermore, let Vi be the optimal transport taking f = (x, + €)“L
to g = (yn + €)°L Y. Note that the even reflection in z, of 1, call it
1, is a potential whose gradient is the optimal transport taking the even
reflection of f to the even reflection of g, in z,, and y,, respectively. So points
along {z, = 0} can be turned into interior points. By [3] and symmetry,
D2y is locally Holder continuous in , the reflection of Q over the z,-axis,
V() C {y, > 0}, and 1, = 0 on QN {z,, = 0}. In particular, we find that

2, _ (ante) .
(4.4) det Dy = (On + o) in Q,
(4.5) Yn, =0 on {z, = 0},

and 1 is smooth in Q and D%y is Holder continuous and strictly positive
definite up to {x,, = 0}. By Theorem 1.1, V1 converges to Vu locally
uniformly in QN {x, > 0}. (We can choose doubling constants for the
denisites (z,, +¢)® and (y, + ¢)? unifornly in €.) So it suffices to prove (4.3)
for 1.

If we differentiate the log of (4.4) and (4.5) in any tangential direction e
(with e - e, = 0), we have that

(4.6) VY 0ijthe = — B

and

Vne
Yy +€

in {z, >0}

Onthe = 0 on {z,, = 0}.
The right-hand side of this equation is Holder continuous. Hence, D% is
Holder continuous across {z,, = 0}. Differentiating again in the e direction,
we find that

(4.7) wijaijwee = /8

and

Ynee
wn + €

Vhe

ik gl
(wn + E) + /l/} wj wljewkle

Q_ﬁ

Ontee = 0 on {z, = 0}.
The right-hand side of this equation is Holder continuous, given the Holder
continuity of D?e just observed. In conclusion, the fourth order derivatives
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&z’jkl are continuous across {x, = 0} provided no more than two of the four
indices are n. And so,

M = log |1,ZJ| + 1()g7Z(ee + %&g

is C?(S) with S = Sy(2,0). The ball B is chosen large enough so that
Sh(zﬁ, 0) € Q. Furthermore, up to subtracting off the tangent plane to ¢ and
h, we can assume that that S = {¢ < 0}.

Let z € {1 < 0} be a point at which M achieves its maximum. (The
point z ¢ {¢) = 0} since eM vanishes on {¢) = 0}.) As 1 is even in z,,, we
can assume that z € {x,, > 0}. So for notational simplicity, we identify
with .

Case 1: M is achieved at z € {z, = 0}. By (4.5), at z,
i = 0 for all i < n.

So, after an orthogonal transformation in the tangential coordinates, which
leaves the equation invariant, we can assume that D?y(z) is diagonal and
e = e1. (While the equality ¢m'|{acn:0} = ( simplifies some of the expressions
below, we refrain from using it, so that Case 2 becomes evident.)

First, differentiating M twice in the e; and evaluating at z, we find
Yi | Y

¢+¢11

(4.8) + Y191, =0

and

Vi P} n i Phy

W P P Yh
So multiplying by 9% = (1 ! and summing over 4, we deduce that
no PR P YUYy,

(4.9) v e + o o + 11 + 11 < 0.

Second, considering (4.6), (4.7), and (4.9), we have that

n Y2 B VYT iy, B
(0 Y2 (Yn + €)1 * Y11 v o Yn +€ =0

Third,

+ % + P1abry; < 0.

Wiiﬁjjw%ij wi%%u _ 1 = wi'j
v Pl Yn a7y Yiitss
and, by (4.8), we find that
S TR TR S U
Y11 VT o
Our first three steps together yield

no 7 B (wnu

Y Y2 n e\ P

+ ¢1¢n1> + 11 <0.
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Now from (4.8) again, i.e.,

zﬂlln ¢n
+ nl = —
o Y11 ”
it follows (recall ¢» < 0 and v, = 0 at z) that
n_ W 1 ( Un ) i
— - + =—|n+ - + <0.
o e TG ) T e T
Consequently,

[Pl < Cn, 191l Lo (s))-

Case 2: M is achieved at z € {z,, > 0}. In this case, after a rotation
e — ey, a shearing transformation x — (x1 —s;x, x2,...,x,) fori =2,...,n,
and then a rotation in the x; variables for i > 1, we can assume D%(z) is
diagonal provided we replace (4.4) and (4.5) with

(4.10)  det D* = W in {z-'¢>0}with'¢-e; =0, |¢|=1,

and

(4.11) Ve 1= spth1 + the = sph1 + VY - ' =0 on {z - ¢ = 0}.

Identical computations to those in Case 1 yield the same final inequality:
n—;ﬁ - wﬁiQ +11 < ;(n—i-ﬂw;bi) - wzﬁﬂ + 11 <0,

from which (4.3) follows for v, as desired. O

A an important consequence of Proposition 4.1 (applied to u and v the
Legendre transform of u) is that u, and z;, are comparable. Recall,

1+«
1+

=

Since the rescalings
u(Dyx)

(4.12) w(z) = with Dy := diag(¢3 1d, 77)

leave the equation invariant, the correct geometry in which to work is defined
by the cylinders

1 1
Cr(2) :== Bl1j2(2') X (2n — 777, 2 + r77) and €, := C,(0).
We state our comparability estimate in this geometry.

Lemma 4.2. Let u be convex and satisfy (4.1). Then two constants co > 0

and Cy > 0, depending on ||Vyul| Lo, nfe,>0))s Vil (vueinfz.>0)
a, B, and n, exist such that

(4.13) co < u—: < Cp on C; N{z, > 0}.
x

n
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Proof. We claim that if
D?u(0) >
then

un (0, 2y,) < C(M)z]) (or > c(M)x)).

Before proving this claim, we use it to conclude the proof of our lemma. Up
to subtracting the tangent plane to uv at 0, assume that v > 0. Then, as 0
was arbitrary, our lemma follows, since Proposition 4.1 (applied to u and v
the Legendre transform of u) tells us that

1
i Id' < D?u < M1d' in B} x {0}.

Now we prove our claim. First, we show that S, (0) is comparable to an
ellipsoid whose axes are parallel to the coordinate axes. Indeed, let

li;h = li;h(u, 0) == inf{xi : (.%'Z',O) S Sh(u, 0)}
and

Tizh = Tip(u, 0) := sup{z; : (z;,0) € Sp(u,0)}.
By Corollary 3.7,
li;h

clin < rip <
for some ¢ < 1, depending only on «, 8, and n. Now define
Wish := Tish + lih
and
dp = dp(u,0) :=sup{zy, : (0,2,) € Sp(u,0)},
and consider
T}, == the triangle determined by (0,dy) and (£min{r;p, 4}, 0).

(The center of mass of Ty, is (0, %dh).) Note that S;(0) N span{e;,e,} is
contained in the union of the subgraphs of the lines determined by (0, d},)
and (£min{r;y, ;. },0) and inside the strip [—l;.p, 75.4] X [0, 00). The heights
of the intersections of these lines and the boundary of the strip is less than
or equal to dj,(1 + ¢™1), from which find a C > 1, depending only on «, £3,
and n, such that CT;, D S,(0) Nspan{e;,e,}. In turn, if €, is the John
ellipsoid of conv{U;<, T}, then

1
(4.14) 0&n C Sp(0) C 58}1,

for some 0 < § < 1 depending only on ¢. The ellipsoid £, has axes parallel
to the coordinate axes, and is our desired ellipsoid.

Since €, has axes parallel to the coordinate axes the distance from its
center to d{x, > 0} is the vertical height of the center, which is comparable
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to d,. Then arguing as in Lemma 2.6, but using the ellipsoid just constructed
above, we see that

1
ad%dhwl;h CrWp—1;h < / (xn)i < Cd%dhwl;h cWn—1;h-
Sp(w)

And, as Sp(v) is dual to Sp(u) (Corollary 3.8), we similarly find that
1hP b h h / 5 WP hoh h
=20 " . < <o—Z_ ... .
C dﬁ dpwih  Wp—1h sh(u)(yn>+ N df dp win  Wp—1;h

Moreover, by Lemma 3.1 and Corollary 3.8, again,

/ ()% ~ / ().
Sh(u) Sh(v)

Therefore,
2+a+8, 2 2
1 _dj, Wip " Wo_15h
(4.15) ol < R <C.
By assumption, for all ¢ <n — 1,
w?y, < 2Mh.

In turn, h!tP < C’M”_leJraJrB, or, equivalently,
W < CMTrats dj,.

Thus, C(M)z:+7 > u(0,2,) > 0. So our claim follows by the convexity of u;
indeed,

C(M)2" 277 > (0, 22,) > u(0,22,) — u(0, 2,) > wn (0, 2 )20
([

Lemma 4.2 effectively gives us control over the second derivatives of u in
the normal direction. And since u,/z) is a solution to an elliptic equation,
with Lemma 4.2 in hand, we can prove an oscillation decay estimate for
un/x). In particular,

solves ' ‘

Brnd™ + (1 + vy)u,u™
T,

Here 09 = 0 if i # j and 6 = 1 if i = ;.

uijgbij + ¢; = 0.

Proposition 4.3. Let u be convex and satisfy (4.1). A constant ¢ € (0,1)
exists, depending only on «, 3, and n, such that

U u
(4.16) 08Ce, ,N{z, >0} ﬁ < (1 = () 0sce;n{a, >0 ﬁ

(A similar and simpler version of the proof of this proposition can be
found in the proof of Lemma 6.3.)
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Proof. From (4.13),

. Uy , L Co + co Uy , 1 Co + co
either ﬁ@ Hre,) < 5 O ﬁ@ T+ ey,) > 5
If the first inequality holds, we build a barrier that pulls u,/z}, down in €y /.
Whereas if the second inequality holds, we build a barrier that pulls w,/x)

up in 61/2.

Case 1: a < (. If the first inequality holds, up to dividing by Cj, assume
that Cy = 1. Then let

Y= (1—e)x) + crelr’|* — ex”
with ¢; > 0 and 1 > Kk > 7 to be chosen. (This is our upper barrier.) First,

note that
¢ >y on {a) < G2’}

1
Second, given any ¢ € (0,2 T+7), applying the Harnack inequality to w,/x}
along a chain of overlapping balls, we find that

sup up, < (1 —¢(0))z),
Cl/Qﬂ{xnzé}

for some small ¢(§) > 0. Third, let 6 be small enough to ensure that
Q= {z) > %\x'\Q} N{xn <0} C €y N{xn > 0}.
Set
€ = ¢(9).
Then
¥ > uy on Of).

With our boundary values understood, we now turn to the interior of 2 and
the equation.

Suppose that u, — 1 achieves its maximum at some point in 2. Then, at
this point, u, = ¢ + s for some s > 0, and

(4.17) 0> uwd;(un — ) > > — Bipn

Tn (0
Using that Vu, = V4 at our distinguished point, we show that (4.17) is
impossible provided § > 0 is sufficiently small, which forces our distinguished
point to be very close to {z,, = 0}.
First, we compute an upper bound for the quotient v, /1. Observe that

— Uy

oy (I—e)x) — exylak

Yo _ (1—@yay~! — exa!

v T (1 —€)zy, — exts Sz, (1—e)x) —ext

Now we look at the sum wu*1);;, which we break into two pieces: u™)y,, and
the remainder. First, observe that

Z u'rpy; = 2cretr(D2u) !

<n
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From Proposition 4.1 (applied to v and its Legendre transform), we have
that

é <(Du) <
Therefore, choose
1
A= 2C"(n—1)°
Hence,
= ufthy > —e
i<n

Now considering D?u as a block matrix, we see that
W = 1 > i
Upn — Vx/un(Dg,u)*lvx/un ~ Upn

)

and so, provided § > 0 is small enough so that ¢, <0,
v—1(1—eay —eny '(k—1)(y = 1) lap

_unn > o
Yrn 2 T, (1 —€)xy — eryLar

In turn, we have the following inequality, for the right-hand side of our
equation,
o BYn o Py, -1

— — —u"y > — — —1 - II -
Tn W Tn  Tn Tn
with
I.— (1 —e)x) — eny Lz
T (1 — ez —ext
and
e o e B D
’ (1 —€)x), — enylak '
As

o — 57 =7 17
we rearrange our lower bound as follows, splitting II into two pieces:
-1
o by oty e o P,
T T, Ty T T
Now we estimate the two factors, above, in parentheses. Observe that
€

L=T1> = Cowqay (14 Cexlfi™)
— €
with (
K(k —7)
Copp i= —m—2 > 0.
T (1 =)

(Here and below C > 0 is a large constant that may change from line to line;
it depends only on k and ~.) Similarly,

n-1> %Clwmgf’yu — Cea™)
— €
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with

(k—7)1+K—7)
(1 —=7)

Finally, we conclude. From above,

> 0.

Cloy =

a Py, _a-t ¢ Corry nm1 .
- —I- 11> L v L— ) — o).
Tn  Tp T, l—¢ kK In (By+r) (1 =) €)

Then, considering (4.17) and choosing € > 0 sufficiently small depending
only on x and -y, we find the inequality

0> - C,

which is impossible once ¢ > 0 is sufficiently small, as desired.
Consequently,
Y > up in €y N {z, > 0}.
In particular,
(1 —€)x) > uy, along {2’ = 0}.
Translating the barrier ¢ to any z € €/, N {x, = 0} and repeating the above
argument, we find that

(1 —e)x) > uy in €/ N {2, > 0}

If, on the other hand, the second inequality holds, up to dividing by ¢
(so that ¢y = 1), consider

= (1+€)x) — cre|2’)® + ext.
An analogous argument proves that
(1+e)x,) <up in €/ N {2, > 0}
In summary, (4.16) holds in Case 1.

Case 2: a = . Setting x = 2 from the start, and following the same line
of reasoning proves this case.

Case 3: a > (. By duality, consider v (the Legendre transform of u).
Reversing the roles of « and 3, and applying the arguments of Case 1 and 2
proves this case. O

Iterating Proposition 4.3 (rescaling €, /2 to Cq leaves things unchanged), we
find that w, /z; is Hélder continuous at the origin. Translating this argument
to other boundary points yields that w,/x] is locally Hélder continuous up
to {x, = 0}. In particular, we have the following corollary.

Corollary 4.4. Let u be conver and satisfy (4.1). A constant x € (0,1)
exists, depending only on «, B, and n, such that

Unp,
H < C(a, B, un /2 | 1 (e, o z0))-
Tnlcox(eyn{zn>0})

From Corollary 4.4, we deduce Theorem 1.4.
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Proof of Theorem 1.4. By Proposition 4.1, duality, and Lemma 4.2, there
exists an M > 0 such that

1 2 I _u :
MId’SDI/uﬁMId’ andﬂgx—gngBix{O}.

After subtracting off the tangent plane to u at any point in €; N {z,, = 0}
and a translation, if we can show that

for some R = R(M) > 0, then (since u, = 0 on {z, = 0})
= < C(M).

’ Yn
2l
Lo°(C1n{zn>0}) Ln ll poo (@1 {zn>01)
(Recall that wu; is the rescaling of u defined in (4.12).) Therefore, by Corol-
lary 4.4 and scaling,

Onug

T

Un C(M)
— <——x —~0ast— oo
Inlcoxen{z,>0}) min{tz,tT+}

Hence, u,, /] is constant in {x,, > 0}. In turn, det D?u is constant in {x, >

0}. So, by Jorgens, Calabi, and Pogorelov’s Liouville theorem ([6, 21, 26]),
u(z) = P(x) + pztt?

n

for some uniformly convex quadratic polynomial P, proving the theorem.
Now we prove (4.18). By the arguments of Lemma 4.2, we find that the
linear map A that normalizes the pair (¢, S) is such that

A = diag(A’,a) and é < (det A)zaa+5 <C,

for some C' > 0, depending only on «, 3, and n. Let
() = (A1),
so that
(4.19) B1(0) C S := A(S) C B,52(0) and Vi(S) C By ,(0),

for some r > 0, depending only on «, 3, and n. The inclusion concerning
the gradient of i follows from Corollary 3.5 and Corollary 3.7. So, by
Proposition 4.1 and duality,

1 ~ .

7 Id" < D24p(0) < M1d'.
Furthermore, by Lemma 4.2,
1 Pn

(M) ~— )

Here and above M > 0 and C’(]\Z/) > 0 depend only on «, 3, and n. It follows
that

(0) < C(M).

Q

L1 < ()14 < MITTd and —— < o < MC(DT).
MM MC()
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These inequalities, by [13, Lemma A.4], imply that
Al |ATY < C(M).
In turn, from (4.19) we deduce (4.18), as desired. O

5. FLAT IMPLIES SMOOTH

In this section, we prove a pointwise “flat implies smooth” result. Be-
fore doing so, we reintroduce and introduce some notation essential to the
statements and proofs of this section.

Recall,

Cr(2) = Blaja(2) X (2n — 177, 2 + 7T7) and €, = €, (0).
Let

_ 2 1
A=A+ ——=1+)\
+14—7 + +1

2 1-—
Tand Ai=A4 —1 =14r-— 1
+ 1+~ I+~
Also, let X be an open set whose boundary in C; is defined by be a nonnegative
function I'x = 'y (') on R~

XNE = {a:n > Fx(m'/)} NCLand 9IXNEC = {%n = Fx(l'/)} N Cy.

Set o )
WP e ot

U(z) : 5 7@

f}/l-‘rﬂ

Finally, define

Ci(2) i= By ja(2)) X (20 — 1747, 2 + 777 and € := C(0).
Proposition 5.1. Assume that X is convex with 0 € 0X. Let Y C {y, > 0}
be an open set with 0 € Y, and assume further that

(5.1) 0<z, < 56\:U'|X on dX N €y and 0 < y, < dely/|* on Y N Cl/p-

Suppose that u € C1(X N €Cy) is a convex function such that
(5.2) u(0) = 0 = |Vu(0)],
u, > 0, and

Vu(0X NEy) C Y NEy,.
In X NGy, assume that

L belal (oo = D)y po,, o Lt Oclal wo
1 + 5€|VU|W Un, 1-— 5E|VU|W (un — 266‘vw/u|ﬁ)+

Furthermore, suppose that
lu—U| <e€in X NCa.
If 8,¢,p > 0 are sufficiently small, then
[u(Re) — U| < Ce(|o![* + 2)7)'
for some R = diag(R',ry).
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Our proposition will follow from an iteration of an improvement of flatness
lemma. In order to state it, however, we need to define one more object:

Uy (z) :=U(z) + 7" - 2 so that Uy = U.
Also, recall,
Dy, := diag(h? 1d', h 7).

Lemma 5.2. Let 0 € 90X and assume that

(5.3) 0 <z, <de ondXNECy.
Furthermore, let u € CY(X N Cy) be conver and such that
(5.4) u(0) =0,

Uy > 0, and

(5.5) 0 <u, <dec on 00X NEC.

Suppose that
1+ de i

1— n— 06)%
Oc (@ )% < det D*u < n mn X NECy.
1+ de ul 1 —de (u, — 56)&

For any 0 < A < 1, there exist constants 6o > 0, €9 > 0, and hg > 0 such
that the following holds: if

lu—Up| <ein XNECy,
then

i — Ux| < h§e in X N Cy
provided 0 < § < g and 0 < € < ¢y. Here

/ / t / /
u(x) == U(Q}zhox), 7= (@ Dho)h(fT +4 ), and X = (QDhO)_lX

for some @ and q' such that
Q = diag(Q', gn) and |Q —1d |, |¢'| < Coe

and
(5.6) © P (det Q) = 1.

To prove our improvement of flatness lemma, we approximate u — U, by

a solution to the Grushin type equation with singular drift Lw = 0 where L
is defined by

b Wn,

Lw =y 2]~ Aprw + wpp, + 67?7

n
which with the Neumann condition w, = 0 on {z, = 0} has a rather nice
regularity theory (see [11]).
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Proof. Let
u—Uy

€

Ue 1=

Step 1: We show that u. is well-approximated near the origin by a
solution w to the linearized equation

’U)n:O on Gl/4ﬂ{$n:0}

in the viscosity sense. In other words, for any 1 > 0, a solution w to (5.7) in
Ci/4 N {zn > 0} exists such that

[ue —w| <min X NECyy
provided dg, €9 > 0 are sufficiently small, depending on 7, p, n, a, and .

Step 1.1: First, we derive the linearized equation.
To this end, by convexity, observe that if z + te € X N Gy, then

(Vu(z) — VU (x)) - te < 2e + (VU (x + te) — VU (x)) - te;
in particular,
[un () — Up(x)] < 23 + c, Inax{e%,e%}.

Consequently, u,, — 0,U,» = U, uniformly in compact subsets of X N C; as
€ — 0. Moreover,

det D*u — det D*U = tr(A.D?*(u — Uyr)),
with )
A= / cof (D*U + t(D*u — D?U)) dt.
0

Since det'/™ is concave on symmetric, positive semi-definite n X n matrices,

1
(det A" > / (t(det Du)/™ + (1 — t)(det D2U)Y/™) dt.
0

Therefore, (det A.)'/™ is strictly positive and bounded on compact subsets
of X N Cy. Furthermore,

Ty Tp _ Th Ty Ty Ty
(n— 007 UP wl UP (un b0l b
1 Up — Up Ty T,
- —ﬂcﬁ/o B(Un~l—t(un — U dt + (o — 32 v
And so,
Loe —ﬁngr@n(u—UT/)-i-c €
1—d¢(u, —60)7 U~ ° ’
with

l,Ot

n
Uéw

br — -3 ase—0and ¢f - 0asd — 0
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locally uniformly in X N €;. Similarly,

1 — d€ (zp — 0€) o
e (z 5)+ _Tn Zb;an(U—UT’)+C<5_€

with
_ zy _
b, = —p iy and cg =0
n

uniformly in compact subsets of X N €y as €, — 0, respectively. In turn,
by the ABP estimate and Schauder theory, D?>u — D?U, = D?U locally
uniformly in X N C; as € — 0. Hence,

]
A — cof D?U = diag(y™F ] 1 1d', 1)
as € — 0 uniformly in compact subsets of X N €.

Step 1.2: Second, we show that u. is uniformly Hélder continuous in an
appropriate sense up to €;/4 N {z, =0} as §,¢ — 0.

To start, we claim that two small constants ¢y > 0 and dg > 0 exist such
that the following holds: for all § < 4y, if

0SCxNE; Ue S 27
then
0SCxNE, )y Ue < 2(1 — ¢p).

We prove this claim with a barrier argument. For every z € 90X N €y,
define

B a7 lz' — 2|
=1 142077+ O
¢ (x) —1—02( +2C1y (1+7)’y+x” 1 )
and
5 (z, —6e) 7 |z" — 2|2
(2) :=1—co( 1 +201yT+7 t ¢
¢*(z) C2< + 201y 1+9)y 1 5 >7

for C1 > 1 and ¢y < 1 with c2C7 < 1 to be chosen (uniformly in z). Also,
let

Fjl (D%, Vb, z) = (1 — 0¢) (b, — d€)'] det D*¢p — (1 + de)ay
and

Fy (D*, Vi, z) := (1 + de)ipf) det D — (1 — de) (w2 — 6¢).

Finally, define

w, = Uy + €9,
and -
/|2 _ v
w® = 2] TR (@n = 06); +ep® + 12,

ATEE A
2 (14+7)y
First, we show that if § > 0 is small enough (and € < 1), then

Fgfe(Dsz,sz,x) >0> F(;;(DQU, Vu,z) in X NCy

and
F;(D*w*, Vw®,z) < 0 < Fy (D*u, Vu,z) in X N €.
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Indeed, if § < ¢y (recalling that coC; < 1 and Cy > 1), then
Fif (D*w., Vw, x) > [(1 = 6€)(1 — caCre)(1 + ¢22C1€) — (1 + be)]ay > 0
and
F({E(Dsz,sz,:r) < [(1+68€)(14+c2Cr€)(1—c22C1€) — (1—=d¢€)](xr,—d€)F < 0.
Second, we address the boundary data. Note that

1 1
either ue(2" ™ ey,) > 0 or u (2 ™ie,) <0.

In the first case, we prove that
u > w, on XN 8@1/8(2') and 9,w, > Opu on OX N (:’1/8(2).
While, in the second case, we prove that

u < w” on X NICyg(2) and dpu > dpw® on X N €y g(2).

In the first case, fix some small distance d > de, depending only on . If Cy is
sufficiently large, depending only on 7, then ¢, < —1 on 9€; j3(2) N{zy, < d}.
Hence, w, < u here. By the Harnack inequality, choosing co > 0 small, we
can ensure that w, < u on the remainder of X N 9C3(z). Also, by (5.5),
once again if § < ¢,

Onw, = Uy, + €c2C1Up, + €ca > €ca > Opu on 90X N Cy5(2).

In the second case, a similar Harnack inequality argument, yields the required
inequality along X N d€; 53(2). Also, by (5.3),

1
Opw® =~ T8 (1 — €co201)(zy — d€)1 = 0 < Jpu on OX N Cqg(2).
By the maximum principle then, one of the two inequalities
w, <u < w?in Xﬂ(‘fl/g(z)

holds for all 2 € 9X N €5, from which the claim follows with ¢y = ca/2.
Iterating the claim, we find that if ¢ < 1/2¥=1 and Jp > 0 is small, then

oscxne, j Ue < 2(1 - co)k.

Thus, after translating the above argument to any point g € 0X N €y /4, we
see that u. converges uniformly in €;,4 N {z,, > 0}, as € and J tend to zero,
to some function w that solves
B w
Lw =T 2) LA pw 4wy, + fy—= =0 in {z, > 0} N Ci/a
x

n
in the viscosity sense (and so, classically by elliptic theory).
Step 1.8: Third, we show that the Neumann condition w,, = 0 is satisfied
in the viscosity sense as defined in [11, Definition 7.1] on €; /4 N {x, = 0}.
If By > 1, then wy, = 0 on {z, = 0} in the viscosity sense since |w| < 1.
This bound is a consequence of Step 1.2.
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When By < 1, we show that w can neither be touched from above at any
point on €y 4 N {zn = 0} by any test function of the form

A
§|:1:' — 2>+ B+ 2pal®
where 2/ € R*!, A, B € R, and

p<0

(making w a viscosity subsolution) nor be touched from below at any point
on Cy/4 N{zy = 0} by any test function of the form

A
5]:1:' — 2>+ B+ 2paxl®
where 2/ € R"!, A, B € R, and

p>0

(making w a viscosity supersolution).
Suppose, to the contrary, that w can be touched from below at some
xo = (24,0) € Cyyq N {zn = 0} by

A
5]33’ — 2>+ B+ 2pal®

for some 2/ € R"™!, A, B € R, and p > 0. Since 8y < 1, we can touch w at
xg from below strictly by

B

7@ 1+
——Cz, " +px
(T+y)y " "

with any C € R. Since u, — w uniformly as €, — 0,

O :=Up +€(d+ces)

o) = Sla! — /P + B+

touches u from below strictly at some z. € X. Arguing as in Step 1.2, we
find that

F§ (D*®(xe), V() xc) > 0
provided 0 < d,e < 1 and C' > 1 (since p > 0). But then
0> Fyf (D*u(xc), Vu(z,), xc) > Fyf (D*®(z.), VP(zc), zc) > 0,

which is impossible. (The first inequality is an assumption on u, and the
middle inequality holds since ® touches u from below.) On the other hand,
suppose, to the contrary, that w can be touched from above at some xy =
($6,0) € 61/4 N {CL’n = O} by

A
5!3:' — 22+ B + 2pa}
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for some 2/ € R"~!, A, B € R, and p < 0. Since v < 1, we can touch w at
xo from above strictly by

B
"yl+ﬂ
(1+y)y
with any C' € R. Since v — w uniformly as d,e — 0,

A
o) = Jl' =P+ B+ C(xn — 0€)7 + payy

|wl‘2 £ (l'n B 56)}&—+7 / !
(I) = +8 T .
5 + v A7) +7 2+ e(p+ces)

touches u from below strictly at some z. € X. Arguing as in Step 1.2, we
find that
Fy5 (D?*®(x), VO(x), 2) <0

provided 0 < §,e < 1 and C <« —1 (since p < 0). But again this inequality
is impossible.

Step 2: Now we find the transformation @ and prove (5.6).

An application of the arguments of [11, Section 7.1] yields that w €
C’l+7(€1/4 N {x, > 0}). In particular, w, = 0 is satisfied in the classical

loc

sense. Moreover, D’;’,w € Cﬁ;cw(@l /4N {xn > 0}). Also, since w is the limit

of a sequence of functions that vanish at the origin (by (5.4)),
w(0) = 0.
In turn, by Taylor’s theorem and (5.7),
1
w(z) =p -2’ + §P’:c’ '+ CypnaptT + O P + 2272 + |2 |z, )

where
!p/!, ’P/‘v ‘pn‘ < C;

in particular,

It follows that, if 0 < §,¢ < 1,

u—UT—e<p'-x’+;P’x'-x'+07pnxé+v>‘ < en+eC (|2 P4+a227 42! |2 L),
So
w(Q'x, Gnan) —U(z) — (7' +¢) - Q2’| < ne + Chze+Ce® in Q HX Neyp)
with

Q = diag(Q',Gn) == ((Id' +€eP') "3, (1 + ep,) "7 and ¢’ = ep.
In turn, if ¢, < h3/2,

W@, Gnwn) — (7' +¢) - Q'a’ — U(w)| < Che in (Q7'X) N Cop.
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Now notice that
2+a+p  2+a+pBtrP
147y 1+y 1+8

—tr P,

And so,
~a+p3 AN2 —Ztats / -1
G (det Q) = (1 4+ epp)” 0 (det(Id +€P"))
= (1 - eQJ{f_::Bpn + 0(62)) (1 —etr P’ + 0(62)) =1+ 0(e).

Thus, we can find a Q that satisfies (5.6) and is €2 close to Q, ie.,
Q- Q| < Ce.
It follows that
w(Q'r, qnan) — (7' +¢) - Q2 —U(x)] < Ch2e in (Q1X) N Cop,

since € < h3/2. Therefore, taking h > 0 sufficiently small (depending on
A < 1), we find that

%u(QDha:) - %(7" +q)-Q' Dy’ —U(z)| < eh? in (QDy)"1X) N ey,

as desired. (]
With Lemma 5.2 in hand, we prove our proposition.

Proof of Proposition 5.1. First, we claim, by induction, that a sequence of
matrices Ry := diag(R},7n,) and vectors 7/, € R""! exit such that the
rescalings of u at height hy = hE,

D
uk(x) = W for x € X, := (Rka)_lX

k

with X )
Dy, := diag(h? 1d’, b))
satisfy
A

(5.8) ]uk — U71/c| < €= ehk? in X3 NGy
provided

d = cdp and € = ¢
for some small ¢ > 0. Moreover,
(5.9) rir?(det Rp)? =1 and |Ry, — Ry—1| < Cejr.

The base case k = 0 holds by assumption, with Ry = Id and 7} = 0.
Now suppose the claim holds for some £ € N. Note that the second
inequality in (5.9) implies that

|R — Id| < Ce.
From (5.1), provided that ¢ > 0 is sufficiently small, we see that

2 2
0<z,< |r;i||R;|A+m56k|x’|A+m < doer on 0Xj N Ca.
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Furthermore, since the segment between 0 and e,lc/ 2(7',;]7','6\*1 + dpexen) lives

inside Xy N Gy (by the above inequality on the height of X} N €y and the
convexity of X), the function wy, = ui + 7/, - 2’ is convex, and the second
equality in (5.2), we deduce that
1 11
77| < 2€f + C,max{e?, €]}

(cf., the beginning of Step 1.1 in the proof of Lemma 5.2). In particular, this
shows that 7/, — 0 as k — oco. A similar argument, but also using that the
family of slopes 7/, is uniformly bounded, yields the inclusion

Vup(X), N €1) C Yy NGy, with Yy := (R, Dy)'h, Y.

By construction, the boundary of X maps to the boundary of Y;. From
(5.1), we also see that

2 2
0 < yn < lriall(Re) M T7 86y M 757 < doer on Yz N €5,
In turn, in X% N €y, uy, > 0 and, using (5.8),
— — (¢4 @
1 — o€, (wn 50€§)+ < det D?uy < 1+ doeg Ty .
L+ doex  (Onug) 1 — o€k (Dpuy, — doer,)s

taking ¢ > 0 smaller if needed depending on p > 0. Therefore, by Lemma 5.2,

I

A ~
’ﬂ,k - U;.I/c| < Gkhg = €p+1 in Xg N Co
where

(2) = 2e@000)

and X := (QDy,) "' X},
for
Q = diag(Q’, g) with |Q —1d|,|¢'| < Coe; and g3 (det Q)% = 1.
In other words, the inductive step holds taking
Upq1 = TG, Rpyp1 = RpQ, and 77, = 7.
Indeed,

P (det Rey1)? = g0 (det Q)%rih7 (det Ry)? = 1,

and
|Ri+1 — Ri| < |Q — Id || Rg| < 2Cye.

Second, we find R and conclude. By the inequality in (5.9), we see that
Ry converges to some R, as k tends to infinity. In particular,

|R — Rg| < Cé.

So, after replacing ex with C'ex,, we can replace Ry by R in (5.8). In particular,
considering the inductive manner in which each 7}, is produced, we have that

A
lu(Rz) — 1}, - R'a’ — U(z)] < C’eh}:—Q in (R7'X)N ey,
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with

k
i—1 _
= hT (Ri_y) g,
=1

Here ¢} is the linear part of the polynomial found at each application of
Lemma 5.2. Hence, r}, converges to some 7/, and

1A
7" — 7| < 2eh,§+2.

It follows that we can replace 7, with r’, as we replaced Ry with R: for all
keN,

A
|u(Rz) —r'- Rz’ —U(z)| < C’eh}j? for all z € (R'X) N €y, .

Finally, we claim that (R')!r" = 0, which concludes the proof. Indeed, the
inequality above tells us that the function u(Rx) — ' - R'a’ — U(x) vanishes

up to and including first order at the origin. From (5.2), we know that
Vu(0) = 0 = VU(0), forcing (R")r" = 0. O

6. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 has three steps. First, we prove a strict oblique-
ness estimate. This key estimate allows us to find an affine transformation
that aligns v5x (0) and vgy (0), assuming Vu(0) = 0. Second, after a rotation
which prescribes the now aligned normals at the origin, we blow-up to the
global flat setting of Section 4. Finally, we apply Proposition 5.1 to find a
pointwise expansion of v at 0. Since, in this procedure, the origin was fixed
arbitrarily, Theorem 1.2 follows.

6.1. Strict Obliqueness. In this section, we prove our strict obliqueness
estimate.

Lemma 6.1. Let X and Y be open, bounded, and C' convex sets in R?.
Suppose that Ty = Vu is the optimal transport taking f = adgy to g =
bdgy, where a and b are functions bounded away from zero and infinity in X
and Y respectively, and max{ca, 3} > 0. Then

vox () - voy (Vu(z)) > 6 > 0 for all x € 0X,

where 6 depends only on the inner and outer diameters of X and Y, «, (3,
and the upper and lower bounds of a and b.

The proof of this estimate follows the proof of the same estimate in
the work of Savin and Yu ([27, Section 3]). We show that orthogonality
(as opposed to strict obliqueness) is at odds with the volume estimate for
sections.

Proof. By an approximation argument, we may assume that ¢ and b are C*
and that X and Y are C? and uniformly convex (cf. [27]).

Let us assume, without loss of generality, that 0 € 90X, {z2 = 0} is tangent
to X (at 0), X C {x2 > 0}, u(0) = 0, and Vu(0) = 0. Now suppose, to
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the contrary, that we have orthogonality instead of strict obliqueness; then
{y1 = 0} is tangent to Y (at 0 = Vu(0)), and, without loss of generality,
Y C {y1 > 0}. Set

Q={reX:z<d}nNVo({yeY :ys >0}).

(Recall v is the minimal convex extension outside of Y of the Legendre
transform of w.) Also, define

diam(Y
1/) = d( )xg.
0
Notice that
(6.1) ug <1 on 02N X.

Moreover, if u19 = u9; along X, then
(6.2) uo1 > 0 along X N Q.

Indeed, first, since Y C {y; > 0} and Y is tangent of the positive yo-axis,
the image under Vu moves to the left as we move along 0X from the left
toward the origin; if I'x determines 0X near the origin,

ui(z1, Px(x1)) > ui(z1,Tx(21)) if 21 < 21 <0.
As uy(z1,Tx (1)) > ur(x1,Tx(x1)), by the convexity of u, we deduce that
ui(z1, Tx (1)) > ui(z1, Tx(21)).
Finally, since I'x (1) > I'x(21), it follows that
u21(21,x (21)) = u12(21,I'x(21)) > 0,

letting x1 tend to z1. Suppose the maximum of us — 1 is achieved at some
z € . Then Vug(z) = Vii(z). And setting

Lw := u" 0w,

we find that, at z,

Vox, €2 a dlam(Y) (ﬁ yayd(Vu) - €9 bg(VU))

0> Liup — ) = o 2Xa"®2 | 92
2 Lluz =) =a—p =+ 7 do doy(Vu) | b(Va)

Vox, - €2 diam(Y) ( Voy,(Vu) - ez )
—=d_ = _C, - +C
dox do day (V) b

>«

> 0.

Indeed, vpx, - €2 > 0, if dy < 1. Moreover, vgy,(Vu) - ez < 0, as Vu(Q2) C
{y2 > 0} and, also, provided that dy < 1. Finally, if dy < 1, then the terms
with dg, in the denominator will be large enough to absorb the constants C,
and Cjp. (Recall max{«, 5} > 0.) Here, for example,

0Xg4:={xr € X : dopx(z) =d}
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and vgx, is the unit normal to 90X, oriented to point inside {z € X :
dox (z) > d}. (See, e.g., [16].) This is a contradiction. In turn, by (6.1) and
(6.2), the maximum of ug — 9 is achieved on 02 N X, which implies that

< diam(Y)x% ;
do
Unfortunately, we cannot guarantee that wio = us; along 0X. Therefore,

we consider the following approximation scheme: let Vu* be the solution to
the optimal transport problem taking

fr= =D+ R e to g% = (1= kg + k7 gl ry.

By [27, Remark 2.1], Vu* converges to Vu locally uniformly in R?, and,
similarly, Vo* converges to Vv locally uniformly in R2. (Here v* is the
minimal convex potential associated to the optimal transport problem taking
g* to f*, and v*, in Y, agrees with the Legendre transform of u*.) Set

W= {reX :z<d}NVF{y €Y : 942 > 0}).

(6.3) n .

Then € converges to ( in the Hausdorfl sense. Since fj and gy are positive
and Holder continuous, u* € C?(X) by Caffarelli’s boundary regularity
theory ([5]). So uf; = u¥, along dX. In turn, by the formal maximum
principle argument above,

diam (Y

do
Taking the limit, k& — oo, proves (6.3).
In summary, if we have orthogonality rather than strict obliqueness,

(6.4) u < Cx3in Q(u) and v < Cy? in Qv),

where the estimate on v is by duality.
To conclude, let 'y determine dY near the origin. Corollaries 3.13 and
3.8 and (6.4) applied in succession imply

Ch? > |Sp(u,0)||Vu(Sy(u,0))|
> | Sk(u, 0)|]S(v,0)]

>c{re X :x <0,29 < ch%}H{y €Y 1y <0,91 < ch%}]
1.1 1 1.1 1
> ch2T'y (ch2)h2I'y " (ch2).
Dividing through by h? yields

'y (ch?) Ty (ch?)

ch? chs
Since I'y(0) = '} (0) = 0, by assumption, (T'y")'(0) = (I'y')'(0) = +oo. But
this implies that the right-hand side above tends to infinity when h tends to
zero, which is impossible. O

C >
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6.2. Blow-ups. In this section, we blow-up. That said, in order to blow-up
to the flat setting studied in Section 4, we have to not only use Lemma 6.1
but choose the right transformation to normalize sections.

6.2.1. A First Normalization. Up to a translation and subtracting an affine
function, we assume that
0€0XNaY, u(0)=0=v(0), and Vu(0) =0 = Vo(0).

From our strict obliqueness estimate, a shearing transformation exists that
aligns the inner unit normals of X and JY at the origin, which after a
rotation can be prescribed. In particular, a © exists such that

X:=0"'X c{z,>0}and Y :=0'Y C {y, > 0}

have {zo = 0} and {y2 = 0} as tangent planes to their boundaries at 0
respectively. Moreover, det © = 1. Then defining

(z) == u(Ox),
we find that
(Vi)uf =g
where
f=ad}; with a(z) := a(Oz) [W}
and

~ - ¢ 8
G = bd’, with b(y) = b(©"y) daY(ey)] _

daY(y)
By [22, Lemma 6.1], @ € C*(X) and @ > 0. Similarly, b € C¥(Y) and b > 0.

Remark 6.2. The restrictions on A with respect to a and g explicitly, rather
than via -, come from this normalization. Indeed, a, for instance, as the
product of two Hélder continuous functions, will be Holder continuous. Yet
between the two Holder exponents it could inherit, it will inherit the smaller
one.

It will be convenient to suppress the tildes in these definitions, and write
u rather than @, for example.

6.2.2. A New FEllipsoid. In the proof of Lemma 4.2, we found ellipsoids
comparable to sections whose axes were parallel to the coordinate axes. The
same construction applies here. The only difference is that the ¢ in (4.14)
now depends on the doubling constants of f and g, dimension, and the
Lipschitz semi-norm of 0X. For simplicity, we let w;, = wy,;,, as defined a
few lines above (4.14). It will be convenient to normalize these ellipsoids as
we blow-up.
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6.2.3. A Blow-up Limit. In this section, we show that the boundaries of
X and Y flatten as we normalize. Since X and Y are C1! and uniformly
convex, near the origin,

{ze >p'ai} € X C {w2 > paf} and {y2 > ¢ Wi} C YV C {y2 > qyi}

for two constants p,q > 0.

Lemma 6.3. For each k € N, there is an hy, > 0 such that dp, > kw%k.

Proof. Suppose the lemma fails to hold; that is, a k € N exists for which
dy, < kw? for all h < h.
Let
Ap, = diag(wp, dp), Xp, := A;LlX, and v}, := h ALY,
and consider the normalized potentials

~u(Apx)

up(x) == N and vp(x) = vy hy)

h

along with their normalized densities
fr(x) = (det Ap) f(Ap) and gn(y) = h*(det A} ")g( A, hy).

Now observe that

_lm%} C Xp, C {x2 > d,:lw%p:v%}

{z2 > dglw%bp
and
{y2 > hdpwy, *¢” Y7} C Yi C {y2 > hdpw;, *qyi}.
By convexity,
dj, > cpws.

Thus, taking & larger if needed,

1 d ~

~<ep< 5 <k

k wy,
Hence, up to a subsequence, as h — 0, we find two limiting domains X and
Y such that

{zg > l::p_l

21} C X = {2 > pla1)} C {az > pk~la},
for some convex p that vanishes only at 0, and

Y = {y > 0}.
Moreover, recalling our balancing condition ((4.15)),

1 d}21+a+5w]2;
c <myp = T E <C,
we find a convex function @, smooth in X, and such that
0 - «
det D?u(x) = ma( )(x pﬁ(a;j)) in {zg > p(z1)}
b(0) iy
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and
iz = 0 along {z2 = p(z1)}
Up to multiplying @ by a constant, we may assume that ma(0)/b(0) = 1.
(The constant m = limy_,o my.)
Set -
Lw = 4" 0;w.
First, notice that there is a C' > 0 such that
Cz3 > 19 on 95:1(a,0).
If 5 := supg, (4,0 (G2 — Cx3) is achieved at € S1(@, 0), then Gy(%) = CZ3 + s
for some s > 0, and
0> L(iz — Cz3)(%)

=« 1 — Cﬂyfg_l — C_17_1£1_707(7 — 1):%7_2
By — (1) Ciy+s 2 2
1 1
>o————(By+7-1)—
T2 — p(xl) z2
>0,

provided o > 0, an impossibility. (Because @iy and Cxg + s touch at Z,
their gradients agree at Z. Since %" is the inverse of i;;, we have that
G1201% + @*19g = 1. Moreover, @12(Z) = (Cz3 + s)1(#) = 0. In turn,
@?%(%)1ig2 (%) = 1, which explains the second equality line.) So we find that
@ < Czy™ in 81 (a,0).
If @ = 0, then consider the power v — € rather than ~, with € > 0 arbitrary
but small. In particular, Cz3 ¢, for some C' > 0 independent of e, is an
upper barrier; the right-hand side, in this case, becomes €(1 + ()Z5 L>o.
Applying the maximum principle and then sending € to zero, yields the same
inequality. Thus,
1
di(1,0) > ctT.
Since up, converges to @ locally uniformly,
1
dy(up, 0) > gtm for all h < 1.

Moreover,
_ den(u) wyp ()

dp(u) wp(u)

So our balancing condition holds for uj, as well after replacing C by C2. In
turn,

d¢(up, 0) and wy(up,0) =

wy(up, 0)? < Ct.
Then .
Ty di(up,0)  dip w?
t = wi(up, 002 dp wl
But taking t <« 1, we find this inequality impossible. O

< k2.
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Swapping the roles of v and v and o and 3 (also p and ¢), we find a dual
lemma.

Lemma 6.4. For each k € N, there is an hy, > 0 such that khydy, < w,%k.

A consequence of Lemmas 6.3 and 6.4 is that the boundaries of X and
Y flatten under Agl and hAj respectively; up to a subsequence, in the
Hausdorff sense,

Xp — {x2 > 0} and Y}, — {y2 > 0},

as h — 0. In turn, up to multiplication by a constant and the same
subsequence, locally uniformly in R?,

B _ _ 71+5
up > u=P@) + pmr -y

by Theorem 1.4. Furthermore,
1
|Vﬂ| < —in Sl(ﬂ,()),
r
where 7 > 0 is the constant from Corollary 3.5.

6.3. Conclusion. Up to a multiplication by a constant and determinant 1
transformation in the 2’ variables (both depending on the constant r > 0
from Corollary 3.5, i.e., only on the doubling constants of f and g), we find
that, after choosing h > 0 sufficiently small, the rescaling

U= uy
satisfies the hypothesis of Proposition 5.1. First, notice that
u(0) =0 = [Va(0)],
which is (5.2), since u(0) = 0 = |Vu(0)|. Second, for any € > 0,
|t —U| < ein Co,
by the conclusion of the previous section. (The constant and determinant 1
transformation turn @ into U.) By convexity,
Va(XNney)cyne;,

And, by construction, Vi maps X to Y. Also,

{z2 > d,:lw%tﬁp_lx%} C X C{xe>0}
and

{y2 > hdhw;Qtﬁqﬂy%} CY C {y2 > 0}.
So (5.1) follows by Lemmas 6.3 and 6.4 as well as the definition of A. These
estimates on 0X and 0Y together with the estimates

ax) — 1] < defa]? and [b(y) — 1] < dely|

imply that the inequalities on det D?@ hold. Thus, applying Proposition 5.1
proves that u is C?t» at 0 when v > 1 and C*7(+9) at 0 when v < 1.
Since © and r > 0 are uniform over points in X, Theorem 1.2 is proved.
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